Microwave radar is a well-established tool for all-weather monitoring of film slicks which appear in radar imagery of the surface of water bodies as areas of reduced backscatter due to suppression of short wind waves. Information about slicks obtained with single-band/one-polarized radar seems to be insufficient for film characterization; hence, new capabilities of multi-polarization radars for monitoring of film slicks have been actively discussed in the literature. In this paper the results of new experiments on remote sensing of film slicks using dual co-polarized radarsa satellite TerraSAR-X and a ship-based X-/C-/S-band radar-are presented. Radar backscattering is assumed to contain Bragg and non-Bragg components (BC and NBC, respectively). BC is due to backscattering from resonant cm-scale wind waves, while NBC is supposed to be associated with wave breaking. Each of the components can be eliminated from the total radar backscatter measured at two co-polarizations, and contrasts of Bragg and non-Bragg components in slicks can be analyzed separately. New data on a damping ratio (contrast) characterizing reduction of radar returns in slicks are obtained for the two components of radar backscatter in various radar bands. The contrast values for Bragg and non-Bragg components are comparable to each other and demonstrate similar dependence on radar wave number; BC and NBC contrasts grow monotonically for the cases of upwind and downwind observations and weakly decrease with wave number for the cross-wind direction. Reduction of BC in slicks can be explained by enhanced viscous damping of cm-scale Bragg waves due to an elastic film. Physical mechanisms of NBC reduction in slicks are discussed. It is hypothesized that strong breaking (e.g., white-capping) weakly contributes to the NBC contrast because of "cleaning" of the water surface due to turbulent surfactant mixing associated with wave crest overturning. An effective mechanism of NBC reduction due to film can be associated with modification of micro-breaking wave features, such as parasitic ripples, bulge, and toe, in slicks.
It is known that films on the sea surface can appear due to ship pollution, river and collector drains, as well as natural biological processes. Marine film slicks can indicate various geophysical processes in the upper layer of the ocean and in the atmosphere. In particular, slick signatures in SAR-imagery of the sea surface at low and moderate wind speeds are often associated with marine currents. Apart from the current itself, other factors such as wind and the physical characteristics of films can significantly influence the dynamics of slick structures. In this paper, a prospective approach aimed at measuring surface currents is developed. The approach is based on the investigation of the geometry of artificial banded slicks formed under the action of marine currents and on the retrieval of the current characteristics from this geometry. The developed approach is applied to quasi stationary slick bands under conditions when the influence of the film spreading effects can be neglected. For the stationary part of the slick band where transition processes of the band formation, e.g., methods of application of surfactants on water, film spreading processes, possible wind transformation etc., become negligible, some empirical relations between the band geometrical characteristics and the characteristics of the surface currents are obtained. The advantage of the approach is a possibility of getting information concerning the spatial structure of marine currents along the entire slick band. The suggested approach can be efficient for remote sensing data verification.
UDC 551.466We study the frequency spectra of the radar signals scattered from the wind waves on the sea surface in the full-scale experiment. Two types of the radar Doppler shifts of the spectrum maximum, namely, the averaged shift of the instantaneous spectrum of the scattered signal and the shift of the maximum of the signal time-averaged spectrum as functions of the incidence angle and the wind velocity and direction are analyzed for different sounding-wave polarizations. Significant difference between the average shift of the instantaneous spectrum and the shift of the average-spectrum maximum is demonstrated. This difference is attributed to the radar-signal modulation effect in the field of long surface waves. The obtained results are very important for correct retrieval of the velocities of the surface currents using the data of the satellite-borne measurements of the radar Doppler shifts.
Investigation of microwave scattering mechanisms is extremely important for developing methods for ocean remote sensing. Recent studies have shown that a common two-scale scattering model accounting for resonance (Bragg) scattering has some drawbacks, in particular it often overestimates the vertical-to-horizontal polarization radar return ratio and underestimates the radar Doppler shifts if the latter are assumed as associated with quasi linear resonance surface waves. It is supposed nowadays that radar backscattering at moderate incidence angles is determined not only by resonance Bragg mechanism but also contains non polarized (non Bragg) component which is associated supposedly with wave breaking but which is still insufficiently studied. Better understanding of the scattering mechanisms can be achieved when studying variations of radar return due to long wind waves. In this paper, results of experiments from an Oceanographic Platform on the Black Sea using dual co-polarized X-band scatterometers working at moderate incidence are presented and variations of Bragg and non-Bragg components (BC and NBC, respectively) and radar Doppler shifts are analysed. It is established that BC and NBC are non-uniformly distributed over profile of dominant (decametre-scale) wind waves (DWW). Variations of BC are characterized by some “background” return weakly modulated with the dominant wind wave periods, while NBC is determined mostly by rare and strong spikes occurred near the crests of the most intense individual waves in groups of DWW. We hypothesize that the spikes are due to intensification of nonlinear structures on the profile of short, decimetre-scale wind waves when the latter are amplified by intense DWW. Bragg scattering in slicks under the experimental conditions was suppressed stronger than NBC and spikes dominated in total radar return. It is obtained that radar Doppler shifts at HH-polarization are larger than at VV-polarization, particularly in slicks, the same relation is for NBC and BC Doppler shifts, thus indicating different scattering mechanisms for these components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.