Conventional fabrication of gold nanobiohybrids is often accomplished by multi-step chemical synthesis, causing rather long production times (hours-days) and requiring multiple purification steps. In contrast, by applying femtosecond-laser systems the process of pulsed laser ablation in liquids (PLAL) with in situ bioconjugation may be used alternatively to produce surfactant-free and functional nanobiohybrids within a single-step approach on the time scale of minutes. Gold nanobiohybrids conjugated with nucleic acids, peptides, proteins and aptamers were successfully established by these means. However, limited process productivity is a main disadvantage of the femtosecond-PLAL approach due to the short pulse duration. In this work for the first time, we utilize picosecond-PLAL to fabricate novel gold-antibody nanobiohybrids for cellular staining issues. The functionality of the nanobiohybrids is confirmed by blotting and cellular immunolabeling, resulting in equivalent staining results than achieved with conventional labeling markers. By the adoption of picosecond pulse duration a higher productivity by one order of magnitude is reached compared to the conventional femtosecond-PLAL. Moreover, the production of nanoparticles and nanobiohybrids with the same surface composition, the same amount of biomolecule load and the same level of biomolecule structure integrity is proven than that gained by femtosecond-PLAL. Finally, the potential physical mechanisms of biomolecule degradation and the quantitative on-line monitoring of the degradation are discussed. The results emphasize laser-fabricated gold-antibody nanobiohybrids as competing products to commercial immunoflow or cellular staining markers. It reveals significantly higher production speed than that achieved via existing fabrication methods and therefore represents a competing technology.
The initial stages of the formation of anatase nanotubes starting from TiO2 microparticles are studied theoretically at density-functional theory (DFT) level. Several formation mechanisms proposed in the literature are discussed. In the present study a mechanism is adapted that starts with NaOH adsorption on the anatase (101) surface. A phase transition from NaOH:anatase to sodium titanate is thermodynamically favorable but does not lead to the formation of sodium titanate nanotubes. Instead it is shown that anatase nanotubes with NaOH adsorbed on the inner surface are stabilized with respect to the unmodified 2D-periodic anatase surface structure. The structure and stability of selected intermediates of the nanotube formation process are investigated. In the experimental part we investigated the initial step of the nanotube formation and characterized the crystal structure of the as prepared titanate nanotubes.
Titanium dioxide nanotubes were obtained by a simple alkaline hydrothermal route forming titanate nanotubes in a first step and subsequent ion exchange with hydrochloric acid. The obtained TiO
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.