During the relatively short time since the discovery of fullerenes in 1985, carbon nanotubes in 1991, and graphene in 2004, the unique properties of carbon-based nanomaterials have attracted great interest, which has promoted the development of methods for large-scale industrial production. The continuously increasing commercial use of engineered carbon-based nanomaterials includes technical, medical, environmental and agricultural applications. Regardless of the application field, this is also associated with an increasing trend of intentional or unintended release of carbon nanomaterials into the environment, where the effect on living organisms is still difficult to predict. This review describes the different types of carbon-based nanomaterials, major production techniques and important trends for agricultural and environmental applications. The current status of research regarding the impact of carbon nanomaterials on plant growth and development is summarized, also addressing the currently most relevant knowledge gaps.
Maca (Lepidium meyenii) is a biennial herbaceous plant of the family Brassicaceae, which recently gained research attention as well as consumer interest. Its underground storage organs are used both as a food and as traditional medicine. The storage organs, called fleshy-hypocotyls, are formed by swollen hypocotyl tissues fused with a taproot. The attempts to grow maca outside of its centre of origin have increased globally, although many cropping requirements are unknown. In terms of fleshy-hypocotyl formation, the impact of day length remains unclear. In this study the effects of day length (8 h, 16 h) on early plant development and hypocotyl thickening in yellow maca were investigated in a rhizobox experiment under controlled conditions (20 °C day and 18 °C night temperature, and relative air humidity 25–30%). Results of a 13-week cultivation period showed that number of leaves and leaf length significantly increased in plants grown under long-day (LD, 16 h) conditions as compared to those from the short-day (SD, 8 h) treatment. Furthermore, plants developed under LD conditions had larger hypocotyl width within 67 days after sowing. At 88 days after sowing, the width was almost two-fold higher. Moreover, the total root length of maca plants from LD treatment was significantly longer and had more fine roots (diameter < 0.4 mm) than in plants cultivated in SD treatment. The obtained results suggest that in early stages of plant development LD can stimulate root development and hypocotyl thickening in yellow maca.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.