Molecular electronics aims to miniaturize electronic devices by using subnanometre-scale active components. A single-molecule diode, a circuit element that directs current flow, was first proposed more than 40 years ago and consisted of an asymmetric molecule comprising a donor-bridge-acceptor architecture to mimic a semiconductor p-n junction. Several single-molecule diodes have since been realized in junctions featuring asymmetric molecular backbones, molecule-electrode linkers or electrode materials. Despite these advances, molecular diodes have had limited potential for applications due to their low conductance, low rectification ratios, extreme sensitivity to the junction structure and high operating voltages. Here, we demonstrate a powerful approach to induce current rectification in symmetric single-molecule junctions using two electrodes of the same metal, but breaking symmetry by exposing considerably different electrode areas to an ionic solution. This allows us to control the junction's electrostatic environment in an asymmetric fashion by simply changing the bias polarity. With this method, we reliably and reproducibly achieve rectification ratios in excess of 200 at voltages as low as 370 mV using a symmetric oligomer of thiophene-1,1-dioxide. By taking advantage of the changes in the junction environment induced by the presence of an ionic solution, this method provides a general route for tuning nonlinear nanoscale device phenomena, which could potentially be applied in systems beyond single-molecule junctions.
Charge transport properties of metal-molecule interfaces depend strongly on the character of molecule-electrode interactions. Although through-bond coupled systems have attracted the most attention, through-space coupling is important in molecular systems when, for example, through-bond coupling is suppressed due to quantum interference effects. To date, a probe that clearly distinguishes these two types of coupling has not yet been demonstrated. Here, we investigate the origin of flicker noise in single molecule junctions and demonstrate how the character of the molecule-electrode coupling influences the flicker noise behavior of single molecule junctions. Importantly, we find that flicker noise shows a power law dependence on conductance in all junctions studied with an exponent that can distinguish through-space and through-bond coupling. Our results provide a new and powerful tool for probing and understanding coupling at the metal-molecule interface.
We studied the formation of graphene nanoribbons (GNRs) via the self-assembly of 10,10'-dibromo-9,9'-bianthryl precursor molecules on gold surfaces with different synchrotron spectroscopies. Through X-ray photoemission spectroscopy core-level shifts, we followed each step of the synthetic process, and could show that the Br-C bonds of the precursors cleave at temperatures as low as 100 degrees C on both Au(111) and Au(110). We established that the resulting radicals bind to Au, forming Au-C and Au-Br bonds. We show that the polymerization of the precursors follows Br desorption from Au, suggesting that the presence of halogens is the limiting factor in this step. Finally, with angle-resolved ultraviolet photoemission spectroscopy and density functional theory we show that the GNR/Au interaction results in an upshift of the Shockley surface state of Au(111) by similar to 0.14 eV, together with an increased electron effective mass
Using scanning tunneling microscope break-junction experiments and a new first-principles approach to conductance calculations, we report and explain low-bias charge transport behavior of four types of metal-porphyrin-gold molecular junctions. A nonequilibrium Green's function approach based on self-energy corrected density functional theory and optimally tuned range-separated hybrid functionals is developed and used to understand experimental trends quantitatively. Importantly, due to the localized d states of the porphyrin molecules, hybrid functionals are essential for explaining measurements; standard semilocal functionals yield qualitatively incorrect results. Comparing directly with experiments, we show that the conductance can change by nearly a factor of 2 when different metal cations are used, counter to trends expected from gas-phase ionization energies which are relatively unchanged with the metal center. Our work explains the sensitivity of the porphyrin conductance with the metal center via a detailed and quantitative portrait of the interface electronic structure and provides a new framework for understanding transport quantitatively in complex junctions involving molecules with localized d states of relevance to light harvesting and energy conversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.