Immunogenicity and protective activity of four cell-based feline immunodeficiency virus (FIV) vaccines prepared with autologous lymphoblasts were investigated. One vaccine was composed of FIV-infected cells that were paraformaldehyde fixed at the peak of viral expression. The other vaccines were attempts to maximize the expression of protective epitopes that might become exposed as a result of virion binding to cells and essentially consisted of cells mildly fixed after saturation of their surface with adsorbed, internally inactivated FIV particles. The levels of FIV-specific lymphoproliferation exhibited by the vaccinees were comparable to the ones previously observed in vaccine-protected cats, but antibodies were largely directed to cell-derived constituents rather than to truly viral epitopes and had very poor FIV-neutralizing activity. Moreover, under one condition of testing, some vaccine sera enhanced FIV replication in vitro. As a further limit, the vaccines proved inefficient at priming animals for anamnestic immune responses. Two months after completion of primary immunization, the animals were challenged with a low dose of homologous ex vivo FIV. Collectively, 8 of 20 vaccinees developed infection versus one of nine animals mock immunized with fixed uninfected autologous lymphoblasts. After a boosting and rechallenge with a higher virus dose, all remaining animals became infected, thus confirming their lack of protection.
The mechanisms whereby feline immunodeficiency virus (FIV) adsorbs and enters into susceptible cells are poorly understood. Here, we investigated the role exerted in such functions by the tryptophan (Trp)-rich motif present membrane-proximally in the ectodomain of the FIV transmembrane glycoprotein. Starting from p34TF10, which encodes the entire genome of FIV Petaluma, we produced 11 mutated clones having the Trp-rich motif scrambled or variously deleted or substituted. All mutated progenies adsorbed normally to cells, but the ones with severe disruptions of the motif failed to generate proviral DNA. In the latter mutants, proviral DNA formation was restored by providing an independent source of intact FIV envelope glycoproteins or by addition of the fusing agent polyethylene glycol, thus clearly indicating that their defect resided primarily at the level of cell entry. In addition, the replication-competent mutants exhibited a generally enhanced susceptibility to selected entry inhibitory synthetic peptides, suggestive of a reduced efficiency of the entry step.
Feline immunodeficiency virus (FIV) is a naturally occurring pathogen that causes an AIDS-like syndrome in domestic cats and is a valuable model system by which criteria for antiviral vaccines and drugs development can be tested. The cell-entry step of the lentivirus life cycle is regarded as a promising target for the development of new generation inhibitors. We have previously described potent in vitro anti-FIV activity associated with a synthetic octapeptide, termed C8 (Ac-Trp-Glu-Asp-Trp-Val-Gly-Trp-Ile-NH2), containing the Trp-rich motif of FIV transmembrane glycoprotein, which shares a common structural framework with the corresponding molecule of HIV and appears to play a similar role in cell entry. In this report, in an attempt to develop simpler potential fusion inhibitors to be tested in vivo, we describe further studies focused on synthetic peptide analogues of C8. Since C8 inhibitory activity is dependent upon the Trp motif, we systematically replaced these residues with bulky and/or aromatic natural and unnatural amino acids, in order to develop a rational structure-activity relationship. Furthermore, the amino acids located between the Trp residues, which are not crucial for inhibitory activity, were replaced by simple alkyl spacers of appropriate length. Design, NMR structural analysis, in vitro anti-FIV activity in lymphoid cell cultures, and serum stability of these new analogues are reported. The final results indicate that a simpler hexapeptide (Ac-Nal2-Ape-Nal2-Ape-Nal2-Ile-NH2; Nal2 = 3-naphthalen-2-yl-L-alanine, Ape = 5-aminopentanoic acid), almost entirely made up of unnatural amino acid residues, has markedly increased enzymatic stability, while maintaining strong antiviral potency in vitro.
Fresh isolates of lentiviruses are characterized by an outstanding resistance to antibody-mediated neutralization. By investigating the changes that occurred in a neutralization-sensitive tissue culture-adapted strain of feline immunodeficiency virus after it was reinoculated into cats, a previous study had identified two amino acid positions of the surface glycoprotein (residues 481 and 557) which govern broad neutralization resistance (BNR) in this virus. By extending the follow-up of six independently evolving in vivo variants of such virus for up to 92 months, we now show that the changes at the two BNR-governing positions not only were remarkably stereotyped but also became fixed in an ordered sequential fashion with the duration of in vivo infection. In one variant, the two positions were also seen to slowly alternate at determining BNR. Evidence that evolution at the BNR-governing positions was accompanied, and possibly driven, by changes in the antigenic makeup of the viral surface brought about by the mutations at such positions is also presented.
The Trp-rich motif (TrpM) of the transmembrane glycoprotein (TM) of lentiviruses is an attractive domain on which to design new potential cell entry peptide inhibitors. We recently demonstrated that an octapeptide reproducing the TrpM of feline immunodeficiency virus (FIV), designated C8, broadly inhibited this virus in vitro and that the retroinverso analogue of this peptide (riC8) was almost as inhibitory and exhibited features suggestive of a much increased stability. Here, we demonstrated that riC8 is indeed highly stable, maintaining its concentration unchanged for at least 24 h in cat serum in vitro. Furthermore, once inoculated into cats, riC8 produced no major acute toxic effects and exhibited satisfactory pharmacokinetic properties. Finally, we report the results of a short-term monotherapy experiment in chronically FIV-infected cats showing that riC8 is well tolerated and also has substantial antiviral activity in vivo. In particular, the mean viral load of riC8-treated animals declined progressively with increasing time of treatment, whereas that of control animals given C8 or solvent alone did not. These results provide the first evidence that clinically useful inhibition of virus replication with a small peptide derived from a functional domain of the TM of a lentivirus can be achieved in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.