No abstract
Parallel-in-time methods, such as multigrid reduction-in-time (MGRIT) and Parareal, provide an attractive option for increasing concurrency when simulating time-dependent partial differential equations (PDEs) in modern high-performance computing environments. While these techniques have been very successful for parabolic equations, it has often been observed that their performance suffers dramatically when applied to advection-dominated problems or purely hyperbolic PDEs using standard rediscretization approaches on coarse grids. In this paper, we apply MGRIT or Parareal to the constant-coefficient linear advection equation, appealing to existing convergence theory to provide insight into the typically nonscalable or even divergent behavior of these solvers for this problem. To overcome these failings, we replace rediscretization on coarse grids with improved coarse-grid operators that are computed by applying optimization techniques to approximately minimize error estimates from the convergence theory. One of our main findings is that, in order to obtain fast convergence as for parabolic problems, coarse-grid operators should take into account the behavior of the hyperbolic problem by tracking the characteristic curves. Our approach is tested for schemes of various orders using explicit or implicit Runge-Kutta methods combined with upwind-finite-difference spatial discretizations. In all cases, we obtain scalable convergence in just a handful of iterations, with parallel tests also showing significant speed-ups over sequential time-stepping. K E Y W O R D Shigh-order, hyperbolic, MGRIT, multigrid, parallel-in-time, Parareal INTRODUCTIONAs compute clock speeds stagnate and core counts of parallel machines increase dramatically, parallel-in-time methods provide an attractive option for increasing concurrency when simulating time-dependent partial differential equations (PDEs). 1,2 Two well-known parallel time integration methods are Parareal 3 and multigrid reduction-in-time (MGRIT), 4
Fully implicit Runge-Kutta (IRK) methods have many desirable properties as time integration schemes in terms of accuracy and stability, but are rarely used in practice with numerical PDEs due to the difficulty of solving the stage equations. This paper introduces a theoretical and algorithmic framework for the fast, parallel solution of the systems of equations that arise from IRK methods applied to linear numerical PDEs (without algebraic constraints). This framework also naturally applies to discontinuous Galerkin discretizations in time. The new method can be used with arbitrary existing preconditioners for backward Euler-type time stepping schemes, and is amenable to the use of three-term recursion Krylov methods when the underlying spatial discretization is symmetric. Under quite general assumptions on the spatial discretization that yield stable time integration, the preconditioned operator is proven to have conditioning ∼ O(1), with only weak dependence on number of stages/polynomial order; for example, the preconditioned operator for 10th-order Gauss integration has condition number less than two. The new method is demonstrated to be effective on various high-order finite-difference and finite-element discretizations of linear parabolic and hyperbolic problems, demonstrating fast, scalable solution of up to 10th order accuracy. In several cases, the new method can achieve 4th-order accuracy using Gauss integration with roughly half the number of preconditioner applications as required using standard SDIRK techniques.
Radiation hydrodynamics are a challenging multiscale and multiphysics set of equations. To capture the relevant physics of interest, one typically must time step on the hydrodynamics timescale, making explicit integration the obvious choice. On the other hand, the coupled radiation equations have a scaling such that implicit integration is effectively necessary in non-relativistic regimes. A first-order Lie-Trotter-like operator split is the most common time integration scheme used in practice, alternating between an explicit hydrodynamics step and an implicit radiation solve and energy deposition step. However, such a scheme is limited to first-order accuracy, and nonlinear coupling between the radiation and hydrodynamics equations makes a more general additive partitioning of the equations non-trivial. Here, we develop a new formulation and partitioning of radiation hydrodynamics with gray diffusion that allows us to apply (linearly) implicitexplicit Runge-Kutta time integration schemes. We prove conservation of total energy in the new framework, and demonstrate 2nd-order convergence in time on multiple radiative shock problems, achieving error 3-5 orders of magnitude smaller than the first-order Lie-Trotter operator split at the hydrodynamic CFL, even when Lie-Trotter applies a 3rd-order TVD Runge-Kutta scheme to the hydrodynamics equations.
Fully implicit Runge-Kutta (IRK) methods have many desirable accuracy and stability properties as time integration schemes, but are rarely used in practice with large-scale numerical PDEs because of the difficulty of solving the stage equations. This paper introduces a theoretical and algorithmic framework for the fast, parallel solution of the nonlinear equations that arise from IRK methods applied to nonlinear numerical PDEs, including PDEs with algebraic constraints. This framework also naturally applies to discontinuous Galerkin discretizations in time. Moreover, the new method is built using the same preconditioners needed for backward Euler-type time stepping schemes. Several new linearizations of the nonlinear IRK equations are developed, offering faster and more robust convergence than the often-considered simplified Newton, as well as an effective preconditioner for the true Jacobian if exact Newton iterations are desired. Inverting these linearizations requires solving a set of block 2 × 2 systems. Under quite general assumptions on the spatial discretization, it is proven that the preconditioned operator has a condition number of ∼ O(1), with only weak dependence on the number of stages or integration accuracy. The new methods are applied to several challenging fluid flow problems, including the compressible Euler and Navier Stokes equations, and the vorticity-streamfunction formulation of the incompressible Euler and Navier Stokes equations. Up to 10th-order accuracy is demonstrated using Gauss integration, while in all cases 4th-order Gauss integration requires roughly half the number of preconditioner applications as required by standard SDIRK methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.