Classical swine fever virus (CSFV) protects cells from double-stranded (ds) RNA-mediated apoptosis and IFN-alpha/beta induction. This phenotype is lost when CSFV lacks N(pro) (DeltaN(pro) CSFV). In the present study, we demonstrate that N(pro) counteracts dsRNA-mediated apoptosis and IFN-alpha/beta induction independently of other CSFV elements. For this purpose, we generated porcine SK-6 and PK-15 cell lines constitutively expressing N(pro) fused to the enhanced green fluorescent protein (EGFP). The survival of the SK6-EGFP-N(pro) cell line after polyinosinic polycytidylic acid [poly(IC)] treatment was comparable to that of CSFV-infected SK-6 cells and was significantly higher than the survival of the parent cell line. In PK-15 cells, the presence of EGFP-N(pro) prevented the DeltaN(pro) CSFV- and poly(IC)-mediated IFN-alpha/beta production. Importantly, N(pro) also inhibited IFN-alpha and IFN-beta promoter-driven luciferase expression in human cells and blocked IFN-alpha/beta induction mediated by Newcastle disease virus. This establishes a novel function for N(pro) in counteraction of the IFN-alpha/beta induction pathway.
Pestiviruses prevent alpha/beta interferon (IFN-␣/) production by promoting proteasomal degradation of interferon regulatory factor 3 (IRF3) by means of the viral N pro nonstructural protein. N pro is also an autoprotease, and its amino-terminal coding sequence is involved in translation initiation. We previously showed with classical swine fever virus (CSFV) that deletion of the entire N pro gene resulted in attenuation in pigs. In order to elaborate on the role of the N pro -mediated IRF3 degradation in classical swine fever pathogenesis, we searched for minimal amino acid substitutions in N pro that would specifically abrogate this function. Our mutational analyses showed that degradation of IRF3 and autoprotease activity are two independent but structurally overlapping functions of N pro . We describe two mutations in N pro that eliminate N pro -mediated IRF3 degradation without affecting the autoprotease activity. We also show that the conserved standard sequence at these particular positions is essential for N pro to interact with IRF3. Surprisingly, when these two mutations are introduced independently in the backbones of highly and moderately virulent CSFV, the resulting viruses are not attenuated, or are only partially attenuated, in 8-to 10-week-old pigs. This contrasts with the fact that these mutant viruses have lost the capacity to degrade IRF3 and to prevent IFN-␣/ induction in porcine cell lines and monocyte-derived dendritic cells. Taken together, these results demonstrate that contrary to previous assumptions and to the case for other viral systems, impairment of IRF3-dependent IFN-␣/ induction is not a prerequisite for CSFV virulence.
The nonstructural protein NS2-3 of pestiviruses undergoes tightly regulated processing. For bovine viral diarrhea virus it was shown that uncleaved NS2-3 is required for infectious particle formation while cleaved NS3 is essential for genome replication. To further investigate the functions of NS2-3 and NS4A in the pestivirus life cycle, we established T7 RNA polymerase-dependent trans-complementation for p7-NS2-3-4A of classical swine fever virus (CSFV). Expression of NS2-3 and NS4A in trans restored the production of infectious particles from genomes lacking NS2-3 expression. Co-expression of cleaved NS4A was essential. None of the enzymatic activities harbored by NS2-3 were required for infectious particle formation. Importantly, expression of uncleavable NS2-3 together with NS4A rescued infectious particles from a genome lacking NS2, demonstrating that cleaved NS2 per se has no additional essential function. These data indicate that NS2-3 and NS3, each in association with NS4A, have independent functions in the CSFV life cycle.
Interleukin 32 (IL-32) is a recently described proinflammatory cytokine that activates p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-jB), thereby inducing proinflammatory cytokines such as IL-1b and tumor necrosis factor alpha (TNFa). We investigated the role of IL-32 in patients with chronic hepatitis C virus (HCV) infection. Steady-state hepatic messenger RNA (mRNA) levels of IL-32 were determined in a cohort of 90 subjects; anti-IL-32 staining was used in a second cohort of 132 consecutive untreated chronic HCV patients. Correlations with histological features of steatosis, inflammation, and fibrosis were made. In vitro, endogenous IL-32 in monocytes and in the human hepatoma cell line Huh-7.5 were examined. The effects of IL-32-overexpression and IL-32-silencing on HCV replication were studied using HCV luciferase reporter viruses. There were highly significant positive associations between hepatic IL-32 mRNA expression and liver steatosis, inflammation, fibrosis, smooth muscle actin (SMA) area, and serum alanine aminotransferase (ALT) levels. IL-32 protein expression was positively associated with portal inflammation, SMA area, and ALT. In vitro, IL-1b and TNF-a significantly induced IL-32 expression in human Huh-7.5 cells. Alone, stimulation with interferon alpha (IFN-a) did not induce IL-32 expression in Huh-7.5. However, IFN-a exerted a significant additive effect on TNF-a-induced but not IL-1b-induced IL-32 expression, particularly in CD14 1 monocytes. This effect was dependent both on NF-jB and Jak/STAT signaling. Viral infection of Huh-7.5 cells resulted in a significant (11-fold) induction of IL-32 mRNA expression. However, modulation of IL-32 in Huh-7.5 cells by overexpression or silencing did not influence HCV virus replication as determined by luciferase assays. Conclusion: IL-32 is a novel proinflammatory cytokine involved in HCV-associated liver inflammation/fibrosis. IL-32 is expressed by human hepatocytes and hepatoma cells and its expression is regulated by proinflammatory stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.