Cellular senescence is a cell state implicated in various physiological processes and a wide spectrum of age-related diseases. Recently, interest in therapeutically targeting senescence to improve healthy aging and age-related disease, otherwise known as senotherapy, has been growing rapidly. Thus, the accurate detection of senescent cells, especially in vivo, is essential. Here, we present a consensus from the International Cell Senescence Association (ICSA), defining and discussing key cellular and molecular features of senescence and offering recommendations on how to use them as biomarkers. We also present a resource tool to facilitate the identification of genes linked with senescence, SeneQuest (available at http://Senequest.net). Lastly, we propose an algorithm to accurately assess and quantify senescence, both in cultured cells and in vivo. Cellular Senescence: Walking a Line between Life and Death Cell states link both physiological and stress signals to tissue homeostasis and organismal health. In both cases, the outcomes vary and are determined by the signal characteristics (type, magnitude, and duration), spatiotemporal parameters (where and when), and cellular capacity to respond (Gorgoulis et al., 2018). In the case of potentially damaging stress, damage is reversed and the structural and functional integrity of cells restored. Alternatively, damage can be irreversible, and cells activate death mechanisms mainly to restrict the impact on tissue degeneration. Between these extremes, cells can acquire other states, often associated with survival but also with permanent structural and functional changes. An example is the non-proliferative but viable state, distinct from G0 quiescence and terminal differentiation, termed cellular senescence (Rodier and Campisi, 2011). Formally described in 1961 by Hayflick and colleagues, cellular senescence, derived from the latin word senex meaning ''old'' (Hayflick and Moorhead, 1961), was originally observed in normal diploid cells that
Bloom syndrome (BS) is an autosomal recessive disorder characterized by a high incidence of cancer and genomic instability. BLM, the protein defective in BS, is a RecQ-like helicase, presumed to function in DNA replication, recombination, or repair. BLM localizes to promyelocytic leukemia protein (PML) nuclear bodies and is expressed during late S and G2. We show, in normal human cells, that the recombination/repair proteins hRAD51 and replication protein (RP)-A assembled with BLM into a fraction of PML bodies during late S/G2. Biochemical experiments suggested that BLM resides in a nuclear matrix–bound complex in which association with hRAD51 may be direct. DNA-damaging agents that cause double strand breaks and a G2 delay induced BLM by a p53- and ataxia-telangiectasia mutated independent mechanism. This induction depended on the G2 delay, because it failed to occur when G2 was prevented or bypassed. It coincided with the appearance of foci containing BLM, PML, hRAD51 and RP-A, which resembled ionizing radiation-induced foci. After radiation, foci containing BLM and PML formed at sites of single-stranded DNA and presumptive repair in normal cells, but not in cells with defective PML. Our findings suggest that BLM is part of a dynamic nuclear matrix–based complex that requires PML and functions during G2 in undamaged cells and recombinational repair after DNA damage.
Primary liver cancer represents a major health problem. It comprises hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC), which differ markedly with regards to their morphology, metastatic potential and responses to therapy. However, the regulatory molecules and tissue context that commit transformed hepatic cells towards HCC or ICC are largely unknown. Here we show that the hepatic microenvironment epigenetically shapes lineage commitment in mosaic mouse models of liver tumorigenesis. Whereas a necroptosis-associated hepatic cytokine microenvironment determines ICC outgrowth from oncogenically transformed hepatocytes, hepatocytes containing identical oncogenic drivers give rise to HCC if they are surrounded by apoptotic hepatocytes. Epigenome and transcriptome profiling of mouse HCC and ICC singled out Tbx3 and Prdm5 as major microenvironment-dependent and epigenetically regulated lineage-commitment factors, a function that is conserved in humans. Together, our results provide insight into lineage commitment in liver tumorigenesis, and explain molecularly why common liver-damaging risk factors can lead to either HCC or ICC.
In this study, we investigated the subcellular and molecular mechanisms underlying promyelocytic leukemia (PML)-induced premature senescence. We demonstrate that intact PML nuclear bodies are not required for the induction of senescence. We have determined further that of seven known PML isoforms, only PML IV is capable of causing premature senescence, providing the ®rst evidence for functional differences among these isoforms. Of interest is the fact that in contrast to PML +/+ ®broblasts, PML ±/± cells are resistant to PML IV-induced senescence. This suggests that although PML IV is necessary for this process to occur, it is not suf®cient and requires other components for activity. Finally, we provide evidence that PML IV-induced senescence involves stabilization and activation of p53 through phosphorylation at Ser46 and acetylation at Lys382, and that it occurs independently of telomerase and differs from that elicited by oncogenic Ras. Taken together, our data assign a speci®c pro-senescent activity to an individual PML isoform that involves p53 activation and is independent from PML nuclear bodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.