For cleaning of contaminated soil from polyaromatic hydrocarbons (PAH), a thermal separation process is applied. The process uses superheated steam that is supplied through a nozzle together with a suspension (approximately 40% soil content) of the contaminated soil into a tube reactor. In the reactor, the soil suspension is vaporized, and the PAH are stripped from the soil at temperatures of 140-300 degrees C. In a cyclone, a solid-vapor separation is carried out, and after going through a condenser, a separation of the condensed water and the PAH is obtained. For improvement of the economical performance, a heat recovery is integrated. This is realized by preheating the water/stream supplied to the evaporator by cooling the vapor steam leaving the reactor. For the mathematical description of the process, the removal of the PAH from the soil is considered to take place by a desorption process. Sorption isotherms are measured by batch experiments and can be described by isotherms of Langmuir type. A dispersion model is used to describe the mass transfer of the process. The process is mathematically modeled for instationary and stationary operation. The simulation predicts the lowest energy consumption at a good cleaning performance at a steam-to-suspension ratio of 5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.