Research activity in chemical gas sensing is currently directed towards the search for highly selective (bio)chemical layer materials, and to the design of arrays consisting of different partially selective sensors that permit subsequent pattern recognition and multi-component analysis. Simultaneous use of various transduction platforms has been demonstrated, and the rapid development of integrated-circuit technology has facilitated the fabrication of planar chemical sensors and sensors based on three-dimensional microelectromechanical systems. Complementary metal-oxide silicon processes have previously been used to develop gas sensors based on metal oxides and acoustic-wave-based sensor devices. Here we combine several of these developments to fabricate a smart single-chip chemical microsensor system that incorporates three different transducers (mass-sensitive, capacitive and calorimetric), all of which rely on sensitive polymeric layers to detect airborne volatile organic compounds. Full integration of the microelectronic and micromechanical components on one chip permits control and monitoring of the sensor functions, and enables on-chip signal amplification and conditioning that notably improves the overall sensor performance. The circuitry also includes analog-to-digital converters, and an on-chip interface to transmit the data to off-chip recording units. We expect that our approach will provide a basis for the further development and optimization of gas microsystems.
The sensing behavior of polymer-coated resonant cantilevers for mass-sensitive detection of volatile organic compounds was investigated. Industrial complementary metal oxide semiconductor (CMOS) technology combined with subsequent CMOS-compatible micromachining was used to fabricate a single-chip system comprising the transducers and all necessary driving and signal-conditioning circuitry. An analytical model was developed to describe the mass-sensing mechanism of polymer-coated resonant cantilevers. The model was validated by measurements of various gaseous analytes. As an exemplary application, the quantitative analysis of a binary mixture using an array of four cantilevers is described. Experimental results are given for the concentration prediction of a mixture of n-octane and toluene. Finally, it was established that the limit of detection achieved with cantilever sensors is comparable to that of other acoustic wave-based gas sensors.
The use of conducting liquids with high electrical conductivity, such as eutectic gallium–indium (EGaIn), has great potential in electronics applications requiring stretchability and deformability beyond conventional flexible electronics relying on solid conductors. An advanced liquid metal thin‐line patterning process based on soft lithography and a compatible vertical integration technique are presented that enable size‐scalable and high‐density EGaIn‐based, soft microelectronic components and circuits. The advanced liquid metal thin‐line patterning process based on poly(dimethylsiloxane) (PDMS) substrates and soft lithography techniques allows for simultaneous patterning of uniform and residue‐free EGaIn lines with line width from single micrometers to several millimeters at room temperature and under ambient pressure. Using this fabrication technique, passive electronic components and circuits are investigated under elastic deformations using numerical and experimental approaches. In addition, soft through‐PDMS vias with high aspect ratio are demonstrated for multilayer interconnections in 2.5D and 3D integration approaches. To highlight the system‐level potential of the patterning technique, a chemical sensor based on an integrated LC resonance circuit with a microfluidic‐tunable interdigitated capacitor and a planar spiral inductor is fabricated and characterized. Finally, to show the flexibility and stretchability of the resulting electronics, circuits with embedded light emitting diodes (LEDs) are investigated under bending, twisting, and stretching deformations.
Innovations in soft material synthesis and fabrication technologies have led to the development of integrated soft electronic devices. Such soft devices offer opportunities to interact with biological cells, mimicking their soft environment. However, existing fabrication technologies cannot create the submicron-scale, soft transducers needed for healthcare and medical applications involving single cells. This work presents a nanofabrication strategy to create submicron-scale, all-soft electronic devices based on eutectic gallium-indium alloy (EGaIn) using a hybrid method utilizing electron-beam lithography and soft lithography. The hybrid lithography process is applied to a biphasic structure, comprising a metallic adhesion layer coated with EGaIn, to create soft nano/microstructures embedded in elastomeric materials. Submicron-scale EGaIn thin-film patterning with feature sizes as small as 180 nm and 1 μm line spacing was achieved, resulting in the highest resolution EGaIn patterning technique to date. The resulting soft and stretchable EGaIn patterns offer a currently unrivaled combination of resolution, electrical conductivity, and electronic/wiring density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.