Explainable artificial intelligence (XAI) seeks to produce explanations for those machine learning methods which are deemed opaque. However, there is considerable disagreement about what this means and how to achieve it. Authors disagree on what should be explained (topic), to whom something should be explained (stakeholder), how something should be explained (instrument), and why something should be explained (goal). In this paper, I employ insights from means-end epistemology to structure the field. According to means-end epistemology, different means ought to be rationally adopted to achieve different epistemic ends. Applied to XAI, different topics, stakeholders, and goals thus require different instruments. I call this the means-end account of XAI. The means-end account has a descriptive and a normative component: on the one hand, I show how the specific means-end relations give rise to a taxonomy of existing contributions to the field of XAI; on the other hand, I argue that the suitability of XAI methods can be assessed by analyzing whether they are prescribed by a given topic, stakeholder, and goal.
Methods of machine learning (ML) are gradually complementing and sometimes even replacing methods of classical statistics in science. This raises the question whether ML faces the same methodological problems as classical statistics. This paper sheds light on this question by investigating a long-standing challenge to classical statistics: the reference class problem (RCP). It arises whenever statistical evidence is applied to an individual object, since the individual belongs to several reference classes and evidence might vary across them. Thus, the problem consists in choosing a suitable reference class for the individual. I argue that deep neural networks (DNNs) are able to overcome specific instantiations of the RCP. Whereas the criteria of narrowness, reliability, and homogeneity, that have been proposed to determine a suitable reference class, pose an inextricable tradeoff to classical statistics, DNNs are able to satisfy them in some situations. On the one hand, they can exploit the high dimensionality in big-data settings. I argue that this corresponds to the criteria of narrowness and reliability. On the other hand, ML research indicates that DNNs are generally not susceptible to overfitting. I argue that this property is related to a particular form of homogeneity. Taking both aspects together reveals that there are specific settings in which DNNs can overcome the RCP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.