SUMMARY Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients represent a powerful tool for biomedical research and may provide a source for replacement therapies. However, the use of viruses encoding the reprogramming factors represents a major limitation of the current technology since even low vector expression may alter the differentiation potential of the iPSCs or induce malignant transformation. Here, we show that fibroblasts from five patients with idiopathic Parkinson’s disease can be efficiently reprogrammed and subsequently differentiated into dopaminergic neurons. Moreover, we derived hiPSCs free of reprogramming factors using Cre-recombinase excisable viruses. Factor-free hiPSCs maintain a pluripotent state and show a global gene expression profile, more closely related to hESCs than to hiPSCs carrying the transgenes. Our results indicate that residual transgene expression in virus-carrying hiPSCs can affect their molecular characteristics and that factor-free hiPSCs therefore represent a more suitable source of cells for modeling of human disease.
Parkinson's disease (PD) is a common neurodegenerative disease caused by genetic and environmental factors. We analyzed induced pluripotent stem cell (iPSC)-derived neural cells from PD patients and presymptomatic individuals carrying mutations in the PINK1 and LRRK2 genes, and healthy control subjects. We measured several aspects of mitochondrial responses in the iPSC-derived neural cells including production of reactive oxygen species, mitochondrial respiration, proton leakage and intraneuronal movement of mitochondria. Cellular vulnerability associated with mitochondrial function in iPSC-derived neural cells from PD patients and at-risk individuals could be rescued with coenzyme Q10, rapamycin or the LRRK2 kinase inhibitor GW5074. Analysis of mitochondrial responses in iPSC-derived neural cells from PD patients carrying different mutations provides insights into convergence of cellular disease mechanisms between different familial forms of PD and highlights the importance of oxidative stress and mitochondrial dysfunction in PD.
We report the first post-mortem analysis of two patients with Parkinson's disease who received fetal midbrain transplants as a cell suspension in the striatum, and in one case also in the substantia nigra. These patients had a favourable clinical evolution and positive 18F-fluorodopa PET scans and did not develop motor complications. The surviving transplanted dopamine neurons were positively identified with phenotypic markers of normal control human substantia nigra (n = 3), such as tyrosine hydroxylase, G-protein-coupled inward rectifying current potassium channel type 2 (Girk2) and calbindin. The grafts restored the cell type that provides specific dopaminergic innervation to the most affected striatal regions in the parkinsonian brain. Such transplants were able to densely reinnervate the host putamen with new dopamine fibres. The patients received only 6 months of standard immune suppression, yet by post-mortem analysis 3-4 years after surgery the transplants appeared only mildly immunogenic to the host brain, by analysis of microglial CD45 and CD68 markers. This study demonstrates that, using these methods, dopamine neuronal replacement cell therapy can be beneficial for patients with advanced disease, and that changing technical approaches could have a favourable impact on efficacy and adverse events following neural transplantation.
Recent advances in deriving induced pluripotent stem (iPS) cells from patients offer new possibilities for biomedical research and clinical applications, as these cells could be used for autologous transplantation. We differentiated iPS cells from patients with Parkinson's disease (PD) into dopaminergic (DA) neurons and show that these DA neurons can be transplanted without signs of neurodegeneration into the adult rodent striatum. The PD patient iPS (PDiPS) cellderived DA neurons survived at high numbers, showed arborization, and mediated functional effects in an animal model of PD as determined by reduction of amphetamine-and apomorphine-induced rotational asymmetry, but only a few DA neurons projected into the host striatum at 16 wk after transplantation. We next applied FACS for the neural cell adhesion molecule NCAM on differentiated PDiPS cells before transplantation, which resulted in surviving DA neurons with functional effects on amphetamine-induced rotational asymmetry in a 6-OHDA animal model of PD. Morphologically, we found that PDiPS cell-derived non-DA neurons send axons along white matter tracts into specific close and remote gray matter target areas in the adult brain. Such findings establish the transplantation of human PDiPS cell-derived neurons as a long-term in vivo method to analyze potential disease-related changes in a physiological context. Our data also demonstrate proof of principle of survival and functional effects of PDiPS cell-derived DA neurons in an animal model of PD and encourage further development of differentiation protocols to enhance growth and function of implanted PDiPS cellderived DA neurons in regard to potential therapeutic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.