Tuffisites are veins of variably sintered, pyroclastic particles that form in conduits and lava domes as a result of localized fragmentation events during gas-and-ash explosions. Those observed in-situ on the active 2012 lava dome of Volcán de Colima range from voids with intra-clasts showing little movement and interpreted to be failure-nuclei, to sub-parallel lenses of sintered granular aggregate interpreted as fragmentation horizons, through to infilled fractures with evidence of viscous remobilization. All tuffisites show evidence of sintering. Further examination of the complex fracture-and-channel patterns reveals viscous backfill by surrounding magma, suggesting that lava fragmentation was followed by stress relaxation and continued viscous deformation as the tuffisites formed. The natural tuffisites are more permeable than the host andesite, and have a wide range of porosity and permeability compared to a narrower window for the host rock, and gaging from their significant distribution across the dome, we posit that the tuffisite veins may act as important outgassing pathways. To investigate tuffisite formation we crushed and sieved andesite from the lava dome and sintered it at magmatic temperatures for different times. We then assessed the healing and sealing ability by measuring porosity and permeability, showing that sintering reduces both over time. During sintering the porosity-permeability reduction occurs due to the formation of viscous necks between adjacent grains, a process described by the neck-formation model of Frenkel (1945). This process leads the granular starting material to a porosity-permeability regime anticipated for effusive lavas, and which describes the natural host lava as well as the most impervious of natural tuffisites. This suggests that tuffisite formation at Volcán de Colima constructed a permeable network that enabled gas to bleed passively from the magma. We postulate that this progressively reduced the lava dome's ability to seal and build pressure that drives explosions. Indeed, the time interval between explosions during 2007-2011 gradually increased before the onset of a period of quiescence starting in June 2011. We suggest that the permeability evolution during tuffisite formation has important consequences for modeling of gas-and-ash explosions, common at dome-forming volcanoes.
The concluding episode of activity during the recent eruption of Mt. Unzen (October 1994to February 1995 was characterized by incremental spine extrusion, accompanied by seismicity. Analysis of the seismic record reveals the occurrence of two dominant long-period event families associated with a repeating, nondestructive source mechanism, which we attribute to magma failure and fault-controlled ascent. We obtain constraints on the slip rate and distance of faulting events within these families. That analysis is complemented by an experimental thermomechanical investigation of fault friction in Mt. Unzen dacitic dome rock using a rotary-shear apparatus at variable slip rates and normal stresses. A power density threshold is found at 0.3 MW m À2, above which frictional melt forms and controls the shear resistance to slip, inducing a deviation from Byerlee's frictional law. Homogenized experimentally generated pseudotachylytes have a similar final chemistry, thickness, and crystal content, facilitating the construction of a rheological model for particle suspensions. This is compared to the viscosity constrained from the experimental data, to assess the viscous control on fault dynamics. The onset of frictional melt formation during spine growth is constrained to depths below 300 m for an average slip event. This combination of experimental data, viscosity modeling, and seismic analysis offers a new description of material response during conduit plug flow and spine growth, showing that volcanic pseudotachylyte may commonly form and modify fault friction during faulting of dome rock. This model furthers our understanding of faulting and seismicity during lava dome formation and is applicable to other eruption modes.
The rapid discharge of gas and rock fragments during volcanic eruptions generates acoustic infrasound. Here we present results from the inversion of infrasound signals associated with small and moderate gas‐and‐ash explosions at Santiaguito volcano, Guatemala, to retrieve the time history of mass eruption rate at the vent. Acoustic waveform inversion is complemented by analyses of thermal infrared imagery to constrain the volume and rise dynamics of the eruption plume. Finally, we combine results from the two methods in order to assess the bulk density of the erupted mixture, constrain the timing of the transition from a momentum‐driven jet to a buoyant plume, and to evaluate the relative volume fractions of ash and gas during the initial thrust phase. Our results demonstrate that eruptive plumes associated with small‐to‐moderate size explosions at Santiaguito only carry minor fractions of ash, suggesting that these events may not involve extensive magma fragmentation in the conduit.
We combine geophysical and experimental observations to interpret preeruptive unrest at Volcán de Colima in 1998. 17,893 volcanic earthquakes were detected between 1 October and 31 December 1998, including 504 clusters. Using seismic ambient noise interferometry, we observe a drop in velocity prior to the eruption linked to damage accumulation during magma ascent. This is supported by experimental observations where static stress causes a velocity decrease prior to failure. Furthermore, we observe acoustic emission clusters during the experiments, with lower porosity samples producing higher numbers of repeaters. This behavior introduces tensile failure as an additional viable mechanism for clusters during magma ascent. The findings suggest that preeruptive magma ascent may be monitored to variable degrees of accuracy via descriptions of damage accumulation and associated seismic velocity changes.
Abstract. Rhythmic seismicity associated with spine extrusion is a well-documented phenomenon at a number of dome-forming volcanic systems. At Unzen volcano, Japan, a 4-year dome-forming eruption concluded with the emplacement of a spine from October 1994 to February 1995, offering a valuable opportunity to further investigate seismogenic processes at dome-forming volcanoes. Using continuous data recorded at a seismic station located close to the dome, this study explores trends in the seismic activity during the extrusion of the spine. We identify a total of 12 208 volcano-seismic events in the period between October 1994 and February 1995. Hourly event counts indicate cyclic activity with periods of ∼ 40 to ∼ 100 h, attributed to pulsatory ascent defined by strain localisation and faulting at the conduit margins. Waveform correlation revealed two strong clusters (a.k.a. multiplets, families) which are attributed to fracturing along the margins of the shallow, ascending spine. Further analysis indicates variable seismic velocities during the spine extrusion as well as migration of the cluster sources along the spine margins. Our interpretation of the results from seismic data analyses is supported by previously published field and experimental observations, suggesting that the spine was extruded along an inclined conduit with brittle and ductile deformation occurring along the margins. We infer that changes in stress conditions acting on the upper and lower spine margins led to deepening and shallowing of the faulting sources, respectively. We demonstrate that the combination of geophysical, field and experimental evidence can help improve physical models of shallow conduit processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.