The purpose of this work was to synthesize and screen, for their effectiveness to act as T1-enhancing magnetic resonance imaging (MRI) contrast agents, a small library of nitroxide lipids incorporated into cubic-phase lipid nanoparticles (cubosomes). The most effective nitroxide lipid was then formulated into lower-toxicity lipid nanoparticles (hexosomes), and effective MR contrast was observed in the aorta and spleen of live rats in vivo. This new class of lower-toxicity lipid nanoparticles allowed for higher relaxivities on the order of those of clinically used gadolinium complexes. The new hexosome formulation presented herein was significantly lower in toxicity and higher in relaxivity than cubosome formulations previously reported by us.
Electrochemical activation of thiocarbonylthio reversible addition−fragmentation chain transfer (RAFT) agents (S=C(Z)S-R) is explored as a potential method for initiating RAFT polymerization under mild conditions without producing initiator-derived byproducts. Herein we apply cyclic voltammetry to establish a predominant reduction mechanism, where electrochemical reduction is coupled to an irreversible first-order chemical reaction. Structure-dependent trends in cyclic voltammograms (CVs), and comparison to absorption spectra, clarify the role of R-and Z-groups in determining reduction processes. The major reduction peak moves to more cathodic potentials in the series dithiobenzoates > trithiocarbonates > heteroaromatic dithiocarbamates > xanthates ∼ N-alkyl-N-aryldithiocarbamates, due to the Zgroup influence on thiocarbonyl bond reactivity. More active (electron-withdrawing, radical stabilizing) R-groups shift the reduction peak anodically, in part due to their influence on the rate of the coupled chemical reaction. Analysis of CVs across a range of scan rates revealed that kinetic control over the reduction mechanism is influenced by both the charge transfer rate and chemical reaction rate.
We have applied a diversity-oriented approach for the synthesis of skeletally diverse and stereochemically complex templates for small-molecule library production by performing Beckmann rearrangement and Beckmann fragmentation reactions on the bicyclo[3.2.1]octane rings of steviol and isosteviol, aglycones derived from the diterpene natural product stevioside. The optimization of these two reaction pathways is presented along with the successful application of a photo-Beckmann rearrangement. This work also led to the discovery of cyano-Prins-type and Thorpe-Ziegler-type cyclization reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.