This study indicates that an SI increase in the DN and GP on T1-weighted images is caused by serial application of the linear GBCA gadopentetate dimeglumine but not by the macrocyclic GBCA gadoterate meglumine. Clinical implications of this observation remain unclear.
Purpose To evaluate whether radiomic feature-based magnetic resonance (MR) imaging signatures allow prediction of survival and stratification of patients with newly diagnosed glioblastoma with improved accuracy compared with that of established clinical and radiologic risk models. Materials and Methods Retrospective evaluation of data was approved by the local ethics committee and informed consent was waived. A total of 119 patients (allocated in a 2:1 ratio to a discovery [n = 79] or validation [n = 40] set) with newly diagnosed glioblastoma were subjected to radiomic feature extraction (12 190 features extracted, including first-order, volume, shape, and texture features) from the multiparametric (contrast material-enhanced T1-weighted and fluid-attenuated inversion-recovery imaging sequences) and multiregional (contrast-enhanced and unenhanced) tumor volumes. Radiomic features of patients in the discovery set were subjected to a supervised principal component (SPC) analysis to predict progression-free survival (PFS) and overall survival (OS) and were validated in the validation set. The performance of a Cox proportional hazards model with the SPC analysis predictor was assessed with C index and integrated Brier scores (IBS, lower scores indicating higher accuracy) and compared with Cox models based on clinical (age and Karnofsky performance score) and radiologic (Gaussian normalized relative cerebral blood volume and apparent diffusion coefficient) parameters. Results SPC analysis allowed stratification based on 11 features of patients in the discovery set into a low- or high-risk group for PFS (hazard ratio [HR], 2.43; P = .002) and OS (HR, 4.33; P < .001), and the results were validated successfully in the validation set for PFS (HR, 2.28; P = .032) and OS (HR, 3.45; P = .004). The performance of the SPC analysis (OS: IBS, 0.149; C index, 0.654; PFS: IBS, 0.138; C index, 0.611) was higher compared with that of the radiologic (OS: IBS, 0.175; C index, 0.603; PFS: IBS, 0.149; C index, 0.554) and clinical risk models (OS: IBS, 0.161, C index, 0.640; PFS: IBS, 0.139; C index, 0.599). The performance of the SPC analysis model was further improved when combined with clinical data (OS: IBS, 0.142; C index, 0.696; PFS: IBS, 0.132; C index, 0.637). Conclusion An 11-feature radiomic signature that allows prediction of survival and stratification of patients with newly diagnosed glioblastoma was identified, and improved performance compared with that of established clinical and radiologic risk models was demonstrated. (©) RSNA, 2016 Online supplemental material is available for this article.
Purpose To evaluate the association of multiparametric and multiregional magnetic resonance (MR) imaging features with key molecular characteristics in patients with newly diagnosed glioblastoma. Materials and Methods Retrospective data evaluation was approved by the local ethics committee, and the requirement to obtain informed consent was waived. Preoperative MR imaging features were correlated with key molecular characteristics within a single-institution cohort of 152 patients with newly diagnosed glioblastoma. Preoperative MR imaging features (n = 31) included multiparametric (anatomic and diffusion-, perfusion-, and susceptibility-weighted images) and multiregional (contrast-enhancing regions and hyperintense regions at nonenhanced fluid-attenuated inversion recovery imaging) information with histogram quantification of tumor volumes, volume ratios, apparent diffusion coefficients, cerebral blood flow, cerebral blood volume, and intratumoral susceptibility signals. Molecular characteristics determined included global DNA methylation subgroups (eg, mesenchymal, RTK I "PGFRA," RTK II "classic"), MGMT promoter methylation status, and hallmark copy number variations (EGFR, PDGFRA, MDM4, and CDK4 amplification; PTEN, CDKN2A, NF1, and RB1 loss). Univariate analyses (voxel-lesion symptom mapping for tumor location, Wilcoxon test for all other MR imaging features) and machine learning models were applied to study the strength of association and discriminative value of MR imaging features for predicting underlying molecular characteristics. Results There was no tumor location predilection for any of the assessed molecular parameters (permutation-adjusted P > .05). Univariate imaging parameter associations were noted for EGFR amplification and CDKN2A loss, with both demonstrating increased Gaussian-normalized relative cerebral blood volume and Gaussian-normalized relative cerebral blood flow values (area under the receiver operating characteristics curve: 63%-69%, false discovery rate-adjusted P < .05). Subjecting all MR imaging features to machine learning-based classification enabled prediction of EGFR amplification status and the RTK II glioblastoma subgroup with a moderate, yet significantly greater, accuracy (63% for EGFR [P < .01], 61% for RTK II [P = .01]) than prediction by chance; prediction accuracy for all other molecular parameters was not significant. Conclusion The authors found associations between established MR imaging features and molecular characteristics, although not of sufficient strength to enable generation of machine learning classification models for reliable and clinically meaningful prediction of molecular characteristics in patients with glioblastoma. RSNA, 2016 Online supplemental material is available for this article.
PurposeTo correlate histopathologic findings from biopsy specimens with their corresponding location within enhancing areas, non-enhancing areas and necrotic areas on contrast enhanced T1-weighted MRI scans (cT1).Materials and MethodsIn 37 patients with newly diagnosed glioblastoma who underwent stereotactic biopsy, we obtained a correlation of 561 1mm3 biopsy specimens with their corresponding position on the intraoperative cT1 image at 1.5 Tesla. Biopsy points were categorized as enhancing (CE), non-enhancing (NE) or necrotic (NEC) on cT1 and tissue samples were categorized as “viable tumor cells”, “blood” or “necrotic tissue (with or without cellular component)”. Cell counting was done semi-automatically.ResultsNE had the highest content of tissue categorized as viable tumor cells (89% vs. 60% in CE and 30% NEC, respectively). Besides, the average cell density for NE (3764 ± 2893 cells/mm2) was comparable to CE (3506 ± 3116 cells/mm2), while NEC had a lower cell density with 2713 ± 3239 cells/mm2. If necrotic parts and bleeds were excluded, cell density in biopsies categorized as “viable tumor tissue” decreased from the center of the tumor (NEC, 5804 ± 3480 cells/mm2) to CE (4495 ± 3209 cells/mm2) and NE (4130 ± 2817 cells/mm2).DiscussionThe appearance of a glioblastoma on a cT1 image (circular enhancement, central necrosis, peritumoral edema) does not correspond to its diffuse histopathological composition. Cell density is elevated in both CE and NE parts. Hence, our study suggests that NE contains considerable amounts of infiltrative tumor with a high cellularity which might be considered in resection planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.