Autophagy proteins are normally involved in the formation of double-membrane autophagosomes that mediate bulk cytoplasmic and organelle degradation. Here we report the modification of single-membrane vacuoles in cells by autophagy proteins. Light Chain 3 (LC3), a component of autophagosomes, is recruited to single-membrane entotic vacuoles, macropinosomes, and phagosomes harboring apoptotic cells, in a manner dependent on lipidation machinery including Atg5 and Atg7, and the class III PI-3-kinase Vps34. These downstream components of autophagy machinery, but not the upstream mTor-regulated Ulk- Atg13-Fip200 complex, facilitate lysosome fusion to single membranes and the degradation of internalized cargo. For entosis, a live cell engulfment program, the autophagy protein-dependent fusion of lysosomes to vacuolar membranes leads to the death of internalized cells, which are killed by their hosts. As pathogen-containing phagosomes can be targeted in a similar manner, the death of epithelial cells by this mechanism mimics pathogen destruction. These data define the targeting of single-membrane vacuoles as a property of autophagy pathway proteins in cells in the absence of pathogenic organisms.
SUMMARY
Adaptation of the endoplasmic reticulum (ER) pathway for MHC class I (MHC-I) presentation in dendritic cells enables cross-presentation of peptides derived from phagocytosed microbes, infected cells, or tumor cells to CD8 T cells. How these peptides intersect with MHC-I molecules remains poorly understood. Here, we show that MHC-I selectively accumulate within phagosomes carrying microbial components, which engage Toll-like receptor (TLR) signaling. Although cross-presentation requires Sec22b-mediated phagosomal recruitment of the peptide loading complex from the ER-Golgi intermediate compartment (ERGIC), this step is independent of TLR signaling and does not deliver MHC-I. Instead, MHC-I are recruited from an endosomal recycling compartment (ERC), which is marked by Rab11a, VAMP3/cellubrevin, and VAMP8/endobrevin and holds large reserves of MHC-I. While Rab11a activity stocks ERC stores with MHC-I, MyD88-dependent TLR signals drive IκB-kinase (IKK)2-mediated phosphorylation of phagosome-associated SNAP23. Phospho-SNAP23 stabilizes SNARE complexes orchestrating ERC-phagosome fusion, enrichment of phagosomes with ERC-derived MHC-I, and subsequent cross-presentation during infection.
Human carcinomas are comprised of complex mixtures of tumor cells that are known to compete indirectly for nutrients and growth factors. Whether tumor cells could also compete directly, for example by elimination of rivals, is not known. Here we show that human cells can directly compete by a mechanism of engulfment called entosis. By entosis, cells are engulfed, or cannibalized while alive, and subsequently undergo cell death. We find that the identity of engulfing ("winner") and engulfed ("loser") cells is dictated by mechanical deformability controlled by RhoA and actomyosin, where tumor cells with high deformability preferentially engulf and outcompete neighboring cells with low deformability in heterogeneous populations. We further find that activated Kras and Rac signaling impart winner status to cells by downregulating contractile myosin, allowing for the internalization of neighboring cells that eventually undergo cell death. Finally, we compute the energy landscape of cell-in-cell formation, demonstrating that a mechanical differential between winner and loser cells is required for entosis to proceed. These data define a mechanism of competition in mammalian cells that occurs in human tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.