To apply federated learning to drug discovery we developed a novel platform in the context of European Innovative Medicines Initiative (IMI) project MELLODDY (grant n°831472), which was comprised of 10 pharmaceutical companies, academic research labs, large industrial companies and startups. The MELLODDY platform was the first industry-scale platform to enable the creation of a global federated model for drug discovery without sharing the confidential data sets of the individual partners. The federated model was trained on the platform by aggregating the gradients of all contributing partners in a cryptographic, secure way following each training iteration. The platform was deployed on an Amazon Web Services (AWS) multi-account architecture running Kubernetes clusters in private subnets. Organisationally, the roles of the different partners were codified as different rights and permissions on the platform and administrated in a decentralized way. The MELLODDY platform generated new scientific discoveries which are described in a companion paper.
Abstract. The simulation of two-phase flow problems involving two time-dependent spatial regions with different physical properties is computationally hard. The numerical solution of such problems is complicated by the need to represent the movement of the interface. The level set approach is a front-capturing method representing the position of the interface implicitly by the root of a suitably defined function. We describe a parallel adaptive finite element simulation based on the level set approach. For freely sedimenting n-butanol droplets in water, we quantify the parallel performance on a Xeon-based cluster using up to 256 processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.