RNA helicases, like their DNA-specific counterparts, can function as processive enzymes, unwinding RNA with a defined step size in a unidirectional fashion. Recombinant nuclear DEAD-box protein p68 and its close relative p72 are reported here to function in a similar fashion, though the processivity of both RNA helicases appears to be limited to only a few consecutive catalytic steps. The two proteins resemble each other also with regard to other biochemical properties. We have found that both proteins exhibit an RNA annealing in addition to their helicase activity. By using both these activities the enzymes are able in vitro to catalyse rearrangements of RNA secondary structures that otherwise are too stable to be resolved by their low processive helicase activities. RNA rearrangement proceeds via protein induced formation and subsequent resolution of RNA branch migration structures, whereby the latter step is dependent on ATP hydrolysis. The analysed DEAD-box proteins are reminiscent of certain DNA helicases, for example those found in bacteriophages T4 and T7, that catalyse homologous DNA strand exchange in cooperation with the annealing activity of specific single strand binding proteins.
Stimulation of astrocytes with epidermal growth factor (EGF) induced proliferation and triggered the biosynthesis of the transcription factor Egr-1, involving the activation of the extracellular signal-regulated protein kinase (ERK) signaling pathway. No differences in the proliferation rate of astrocytes prepared from wild-type or Egr-1-deficient mice were detected. However, expression of a dominant-negative mutant of Egr-1 that interfered with DNA-binding of all Egr proteins prevented EGF-induced proliferation of astrocytes. Site-directed mutagenesis of two crucial cysteine residues within the zinc finger DNA-binding domain revealed that DNA-binding of the Egr-1 mutant was essential to inhibit proliferation of EGF-stimulated astrocytes. Expression of NAB2 (a negative co-regulator of Egr-1, Egr-2 and Egr-3) or a dominant-negative mutant of Elk-1 (a key regulator of Egr-1 biosynthesis) abolished EGF-induced proliferation of astrocytes. Chromatin immunoprecipitation experiments showed that Egr-1, Egr-2 and Egr-3 bound to the gene expressing basic fibroblast growth factor (bFGF) in EGF-stimulated astrocytes. Egr-2 and Egr-3 also interacted with the bFGF gene in EGF-stimulated astrocytes prepared from Egr-1-deficient mice, indicating that loss of Egr-1 is compensated by other Egr proteins. Together, these data show that Egr transcription factors are essential for conversion of the mitogenic signal of EGF into a proliferative response.
We have investigated the molecular mechanisms of neurotrophin-mediated cell survival in HT22 cells, a murine cell line of hippocampal origin, expressing the brain-derived neurotrophic factor (BDNF) receptor TrkB as well as the TrkB.T1 splice variant. Stimulation with BDNF protected HT22-TrkB cells, but not HT22-TrkB.T1 cells, against programmed cell death induced by serum deprivation. BDNF did not, however, provide protection against oxidative glutamate toxicity, indicating that serum deprivation-induced cell death differs substantially from glutamate-induced cell death. Using a pharmacological strategy to block either the extracellular signal-regulated protein kinase (ERK) or the phosphatidylinositol 3-kinase (PI3) pathway, we show that activation of PI3 kinase is required for the neuroprotective activity of BDNF in HT22 cells. To further analyse the role of ERK in neuroprotection we expressed an inducible DRaf-1:ER fusion protein in HT22 cells. Activation of this conditionally active form of Raf-1 induced a sustained phosphorylation of ERK, and protected the cells from serum withdrawal-induced cell death. Inhibition of ERK activation at different time points revealed that a prolonged activation of ERK is essential to protect HT22 cells from cell death triggered by the withdrawal of serum, indicating that the duration of ERK activation is of major importance for its neuroprotective biological function. Keywords: brain-derived neurotrophic factor, extracellular signal-regulated protein kinase, phosphatidylinositol 3-kinase, Raf-1, TrkB.
p68 and p72 are two highly related DEAD box proteins with similar biochemical activities in the nucleus of vertebrate cells; it is unknown whether they have redundant or differential in vivo functions. We report on a third member of this subfamily that is alternatively expressed from p72 mRNA. A detailed analysis of HeLa p72 mRNA was performed. It has an overall length of more than 5 kb and contains a 0.75-kb 5-untranslated region and a 3-untranslated region of 2.5 kb. Its open reading frame extends to nucleotide ؊243 upstream of the first in-frame AUG (A in the AUG triplet is ؉1) which serves as the p72 translation initiator codon. We provide evidence that alternative translation at a non-AUG within the extra coding region of this mRNA yields an 82-kDa protein (p82). Immunological studies substantiate that p82 is a naturally existing p72 variant and that both proteins are expressed at similar concentrations. p82 purified from HeLa cells is an ATP-dependent RNA helicase with biochemical properties almost identical to those of p72.Control of transcription is generally considered the main regulation level of mammalian gene expression, although mRNA maturation and modulation of mRNA stability or translational efficiency also contribute to expression control (1). Generation of protein variants by alternative pre-mRNA splicing or alternative initiation of mRNA translation enlarges the coding capacity and may explain the relatively low number of genes actually found in the human genome. According to recent estimations, on average one gene encodes three proteins (2).Although the 5Ј-untranslated leader sequences (UTRs) 1 of most vertebrate mRNAs are less than 100 nucleotides (nt) long (3), those of tightly controlled genes usually are longer and are GC-rich. Such structure-prone 5Ј-UTRs can modulate translation by the presence of upstream (up) open reading frames (ORFs) in addition to the main ORF, by formation of secondary structures, and/or by RNA-protein interactions (4). Indeed, they appear particularly characteristic of mRNAs encoding growth factors, receptor proteins, transcription factors, signal transduction components, proto-oncogenes, tumor suppressor proteins, and even proteins that mostly are constitutively expressed at a low level ("housekeeping" proteins).DEAD/DEXH box proteins belonging to superfamily II of RNA helicases play a universal role in RNA metabolism of proand eukaryotes. Not surprisingly, they are involved in gene expression control, for instance during germ cell and embryonic development or in cell proliferation and differentiation (5). This in turn requires tight control of at least some DEAD/DEXH box proteins like CsdA of Escherichia coli, which is regulated by an 11-nt "cold box" sequence in its 5Ј-UTR (6), or the Saccharomyces cerevisiae Dbp2, the gene of which contains an unusually large intron that is part of a post-transcriptional autoregulatory feedback loop (7). A similarly complex transcription regulation has been shown for nuclear p68 (8), a mammalian homologue of Dbp2. In addition,...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.