Purpose:To analyze the effect of an eccentric-overload training program (ie, half-squat and leg-curl exercises using flywheel ergometers) with individualized load on muscle-injury incidence and severity and performance in junior elite soccer players. Methods: Thirty-six young players (U-17 to U-19) were recruited and assigned to an experimental (EXP) or control group (CON). The training program consisted of 1 or 2 sessions/wk (3-6 sets with 6 repetitions) during 10 wk. The outcome measured included muscle injury (incidence per 1000 h of exposure and injury severity) and performance tests (countermovement jump Furthermore, a possible decrement in total injury incidence was also reported in EXP. Conclusions: The eccentric-based program led to a reduction in muscle-injury incidence and severity and showed improvements in common soccer tasks such as jumping ability and linear-sprinting speed.[
As EVT, not CONV, improved not only COD ability but also linear speed and reactive jumping, this "proof-of-principle" study suggests that this novel exercise paradigm performed once weekly could serve as a viable adjunct to improve performance tasks specific to soccer.
Eight weeks of EOT induced substantial improvements in functional-performance tests, although the force-vector application may play a key role to develop different and specific functional adaptations.
Both training programs substantially improved most of the physical-fitness tests, but only UNI reduced between-limbs asymmetry and achieved greater enhancements in actions that mostly required applying force unilaterally in basketball players.
The aim of this study was to analyze the effects of 3 different low/moderate load strength training methods (full-back squat [SQ], resisted sprint with sled towing [RS], and plyometric and specific drills training [PLYO]) on sprinting, jumping, and change of direction (COD) abilities in soccer players. Thirty-two young elite male Spanish soccer players participated in the study. Subjects performed 2 specific strength training sessions per week, in addition to their normal training sessions for 8 weeks. The full-back squat protocol consisted of 2-3 sets × 4-8 repetitions at 40-60% 1 repetition maximum (∼ 1.28-0.98 m · s(-1)). The resisted sprint training was compounded by 6-10 sets × 20-m loaded sprints (12.6% of body mass). The plyometric and specific drills training was based on 1-3 sets × 2-3 repetitions of 8 plyometric and speed/agility exercises. Testing sessions included a countermovement jump (CMJ), a 20-m sprint (10-m split time), a 50-m (30-m split time) sprint, and COD test (i.e., Zig-Zag test). Substantial improvements (likely to almost certainly) in CMJ (effect size [ES]: 0.50-0.57) and 30-50 m (ES: 0.45-0.84) were found in every group in comparison to pretest results. Moreover, players in PLYO and SQ groups also showed substantial enhancements (likely to very likely) in 0-50 m (ES: 0.46-0.60). In addition, 10-20 m was also improved (very likely) in the SQ group (ES: 0.61). Between-group analyses showed that improvements in 10-20 m (ES: 0.57) and 30-50 m (ES: 0.40) were likely greater in the SQ group than in the RS group. Also, 10-20 m (ES: 0.49) was substantially better in the SQ group than in the PLYO group. In conclusion, the present strength training methods used in this study seem to be effective to improve jumping and sprinting abilities, but COD might need other stimulus to achieve positive effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.