Animals native to the hypoxic and cold environment at high altitude provide an excellent opportunity to elucidate the integrative mechanisms underlying the adaptive evolution and plasticity of complex traits. The capacity for aerobic thermogenesis can be a critical determinant of survival for small mammals at high altitude, but the physiological mechanisms underlying the evolution of this performance trait remain unresolved. We examined this issue by comparing high-altitude deer mice ( Peromyscus maniculatus ) with low-altitude deer mice and white-footed mice ( P. leucopus ). Mice were bred in captivity and adults were acclimated to each of four treatments: warm (25°C) normoxia, warm hypoxia (12 kPa O 2 ), cold (5°C) normoxia or cold hypoxia. Acclimation to hypoxia and/or cold increased thermogenic capacity in deer mice, but hypoxia acclimation led to much greater increases in thermogenic capacity in highlanders than in lowlanders. The high thermogenic capacity of highlanders was associated with increases in pulmonary O 2 extraction, arterial O 2 saturation, cardiac output and arterial–venous O 2 difference. Mechanisms underlying the evolution of enhanced thermogenic capacity in highlanders were partially distinct from those underlying the ancestral acclimation responses of lowlanders. Environmental adaptation has thus enhanced phenotypic plasticity and expanded the physiological toolkit for coping with the challenges at high altitude.
Studies of embryonic and hatchling reptiles have revealed marked plasticity in morphology, metabolism, and cardiovascular function following chronic hypoxic incubation. However, the long-term effects of chronic hypoxia have not yet been investigated in these animals. The aim of this study was to determine growth and postprandial O2 consumption (V̇o2), heart rate (fH), and mean arterial pressure (Pm, in kPa) of common snapping turtles (Chelydra serpentina) that were incubated as embryos in chronic hypoxia (10% O2, H10) or normoxia (21% O2, N21). We hypothesized that hypoxic development would modify posthatching body mass, metabolic rate, and cardiovascular physiology in juvenile snapping turtles. Yearling H10 turtles were significantly smaller than yearling N21 turtles, both of which were raised posthatching in normoxic, common garden conditions. Measurement of postprandial cardiovascular parameters and O2 consumption were conducted in size-matched three-year-old H10 and N21 turtles. Both before and 12 h after feeding, H10 turtles had a significantly lower fH compared with N21 turtles. In addition, V̇o2 was significantly elevated in H10 animals compared with N21 animals 12 h after feeding, and peak postprandial V̇o2 occurred earlier in H10 animals. Pm of three-year-old turtles was not affected by feeding or hypoxic embryonic incubation. Our findings demonstrate that physiological impacts of developmental hypoxia on embryonic reptiles continue into juvenile life.
In vertebrates, changes in surface temperature following exposure to an acute stressor are thought to be promising indicators of the physiological stress response that may be captured noninvasively by infrared thermography. However, the efficacy of using stress‐induced changes in surface temperature as indicators of physiological stress‐responsiveness requires: (1) an understanding of how such responses vary across the body, (2) a magnitude of local, stress‐induced thermal responses that is large enough to discriminate and quantify differences among individuals with conventional technologies, and (3) knowledge of how susceptible measurements across different body regions are to systematic error. In birds, temperature of the bare tissues surrounding the eye (the periorbital, or “eye,” region) and covering the bill have each been speculated as possible predictors of stress physiological state. Using the domestic pigeon (Columba livia domestica; n = 9), we show that stress‐induced changes in surface temperature are most pronounced at the bill and that thermal responses at only the bill have sufficient resolution to detect and quantify differences in responsiveness among individuals. More importantly, we show that surface temperature estimates at the eye region experience greater error due to changes in bird orientation than those at the bill. Such error concealed detection of stress‐induced thermal responses at the eye region. Our results highlight that: (1) in some species, bill temperature may serve as a more robust indicator of autonomic stress‐responsiveness than eye region temperature, and (2) future studies should account for spatial orientation of study individuals if inference is to be drawn from infrared thermographic images.
Reduced oxygen availability (hypoxia) is a potent stressor during embryonic development, altering the trajectory of trait maturation and organismal phenotype. We previously documented that chronic embryonic hypoxia has a lasting impact on the metabolic response to feeding in juvenile snapping turtles (Chelydra serpentina). Turtles exposed to hypoxia as embryos [10% O 2 (H10)] exhibited an earlier and increased peak postprandial oxygen consumption rate, compared with control turtles [21% O 2 (N21)]. In the current study, we measured central blood flow patterns to determine whether the elevated postprandial metabolic response in H10 turtles is linked to lasting impacts on convective transport. Five years after hatching, turtles were instrumented to quantify systemic ( _ Q sys ) and pulmonary ( _ Q pul ) blood flows and heart rate ( f H ) before and after a ∼5% body mass meal. In adult N21 and H10 turtles, f H was increased significantly by feeding. Although total stroke volume (V S,tot ) remained at fasted values, this tachycardia contributed to an elevation in total cardiac output ( _ Q tot ). However, there was a postprandial reduction in a net left-right (L-R) shunt in N21 snapping turtles only. Relative to N21 turtles, H10 animals exhibited higher _ Q sys due to increased blood flow through the right systemic outflow vessels of the heart. This effect of hypoxic embryonic development, reducing a net L-R cardiac shunt, may support the increased postprandial metabolic rate we previously reported in H10 turtles, and is further demonstration of adult reptile cardiovascular physiology being programmed by embryonic hypoxia.
Background Complex organismal traits are often the result of multiple interacting genes and sub-organismal phenotypes, but how these interactions shape the evolutionary trajectories of adaptive traits is poorly understood. We examined how functional interactions between cardiorespiratory traits contribute to adaptive increases in the capacity for aerobic thermogenesis (maximal O2 consumption, V̇O2max, during acute cold exposure) in high-altitude deer mice (Peromyscus maniculatus). We crossed highland and lowland deer mice to produce F2 inter-population hybrids, which expressed genetically based variation in hemoglobin (Hb) O2 affinity on a mixed genetic background. We then combined physiological experiments and mathematical modeling of the O2 transport pathway to examine the links between cardiorespiratory traits and V̇O2max. Results Physiological experiments revealed that increases in Hb-O2 affinity of red blood cells improved blood oxygenation in hypoxia but were not associated with an enhancement in V̇O2max. Sensitivity analyses performed using mathematical modeling showed that the influence of Hb-O2 affinity on V̇O2max in hypoxia was contingent on the capacity for O2 diffusion in active tissues. Conclusions These results suggest that increases in Hb-O2 affinity would only have adaptive value in hypoxic conditions if concurrent with or preceded by increases in tissue O2 diffusing capacity. In high-altitude deer mice, the adaptive benefit of increasing Hb-O2 affinity is contingent on the capacity to extract O2 from the blood, which helps resolve controversies about the general role of hemoglobin function in hypoxia tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.