Automated protocoling for MRI examinations is an amendable target for workflow automation with artificial intelligence. However, there are still challenges to overcome for a successful and robust approach. These challenges are outlined and analyzed in this work. Through a literature review, we analyzed limitations of currently published approaches for automated protocoling. Then, we assessed these limitations quantitatively based on data from a private radiology practice. For this, we assessed the information content provided by the clinical indication by computing the overlap coefficients for the sets of ICD-10-coded admitting diagnoses of different MRI protocols. Additionally, we assessed the heterogeneity of protocol trees from three different MRI scanners based on the overlap coefficient, on MRI protocol and sequence level. Additionally, we applied sequence name standardization to demonstrate its effect on the heterogeneity assessment, i.e., the overlap coefficient, of different protocol trees. The overlap coefficient for the set of ICD-10-coded admitting diagnoses for different protocols ranges from 0.14 to 0.56 for brain/head MRI exams and 0.04 to 0.57 for spine exams. The overlap coefficient across the set of sequences used at two different scanners increases when applying sequence name standardization (from 0.81/0.86 to 0.93). Automated protocoling for MRI examinations has the potential to reduce the workload for radiologists. However, an automated protocoling approach cannot be solely based on admitting diagnosis as it does not provide sufficient information. Moreover, sequence name standardization increases the overlap coefficient across the set of sequences used at different scanners and therefore facilitates transfer learning.
A German regulation requires nursing managers to document patient-nurse ratios. They have to combine heterogeneous hospital data from different sources. Missing documentation or ratios that are too high lead to sanctions. Automated approaches are needed to accelerate the time-consuming and error-prone documentation process. A documentation and visualization system was implemented. The system allows nursing managers to quickly and automatically create the documentation required by the regulation. Interactive visualization dashboards assist with the analysis of patient and staff numbers. The developed method was effectively used in nursing management tasks. No changes to the information technology infrastructure were needed. The new process is around 35 hours per month faster and less error-prone. The documentation functionality automatically reads the required information and correctly calculates the documentation. The visualization functionality allows nursing managers to assess the current patient-nurse ratios before the documentation is submitted. The method scales to multiple wards and locations. It calculates the sanctions to expect and is easily updatable. The proposed method is expected to decrease nursing administration workloads and facilitate the analysis of nursing management data in a cost-effective way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.