For wind energy, the knowledge of the available wind resource is essential. Therefore, specific wind phenomena at the altitude range of wind turbines are currently the focus of investigations. One such specific feature is the low-level jet (LLJ). The article analyses LLJ properties at two locations in the German Bight: A wind lidar system for measuring wind profiles at heights from 50 m to 500 m a.g.l. (above ground level) was first installed at the offshore island of Heligoland, Germany, and then at the coastal island of Norderney, Germany, for one year. The LLJ is defined here as a maximum horizontal wind speed in the vertical profile of horizontal wind speed followed by a minimum wind speed, independent of the mechanism or origin of the phenomenon. The two sites showed a similar annual and diurnal distribution of LLJ events with a maximum occurrence in spring and summer and during the night, and a most frequent jet core height of around 120 m a.g.l. Based on radiosondes launched from Norderney at midnight and noon, it is shown that LLJ events at noon are most frequent when atmospheric conditions are stable. A case study shows the horizontal extent of an LLJ event over at least 100 km by simultaneous wind lidar measurements at four sites in the German Bight and mesoscale simulations with the weather research and forecast (WRF) model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.