The new idea is to produce specimens by forward rod extrusion, where in the core of the extrudate a deviatoric tension-loading is present, which is superposed by an adjustable hydrostatic pressure. Various damage levels are hence possible in the extrudate. Conducting tensile and upsetting tests with the pre-strained specimens both the influence of a load reversal as well as the material weakening through ductile damage on the resulting flow curve is explored. Not only can the results be utilized to identify flow curves of materials up to high strains (ε > 1.7), but also to get new insights into the plastic material behaviour, which can be used for generating or adapting new damage models as well as kinematic hardening models under cold forging conditions. The proposed method was first assessed by means of analytical and numerical methods and then validated experimentally, by the example of the typical cold forging steel 16MnCrS5.
Hot stamping of sheet metal is an established method for the manufacturing of light weight products with tailored properties. However, the generally-applied continuous roller furnace manifests two crucial disadvantages: the overall process time is long and a local setting of mechanical properties is only feasible through special cooling techniques. Hot forming with rapid heating directly before shaping is a new approach, which not only reduces the thermal intervention in the zones of critical formability and requested properties, but also allows the processing of an advantageous microstructure characterized by less grain growth, additional fractions (e.g., retained austenite), and undissolved carbides. Since the austenitization and homogenization process is strongly dependent on the microstructure constitution, the general applicability for the process relevant parameters is unknown. Thus, different austenitization parameters are analyzed for the conventional high strength steels 22MnB5, Docol 1400M, and DP1000 in respect of the mechanical properties. In order to characterize the resulting microstructure, the light optical and scanning electron microscopy, micro and macro hardness measurements, and the X-ray diffraction are conducted subsequent to tensile tests. The investigation proves not only the feasibility to adjust the strength and ductility flexibly, unique microstructures are also observed and the governing mechanisms are clarified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.