We developed a new, simple and robust approach for rapid screening of single molecule interactions with protein channels. Our glass nanopipets can be fabricated simply by drawing glass capillaries in a standard pipet puller, in a matter of minutes, and do not require further modification before use. Giant unilamellar vesicles break when in contact with the tip of the glass pipet and form a supported bilayer with typical seal resistances of ∼140 GΩ, which is stable for hours and at applied potentials up to 900 mV. Bilayers can be formed, broken, and re-formed more than 50 times using the same pipet enabling rapid screening of bilayers for single protein channels. The stability of the lipid bilayer is significantly superior to that of traditionally built bilayers supported by Teflon membranes, particularly against perturbation by electrical and mechanical forces. We demonstrate the functional reconstitution of the E. coli porin OmpF and α-hemolysin in a glass nanopipet supported bilayer. Interactions of the antibiotic enrofloxacin with the OmpF channel have been studied at the single-molecule level, demonstrating the ability of this method to detect single molecule interactions with protein channels. High-resolution conductance measurements of protein channels can be performed with low sample and buffer consumption. Glass nanopipet supported bilayers are uniquely suited for single-molecule studies as they are more rigid and the lifetime of a stable membrane is on the scale of hours, closer to that of natural cell membranes.
We characterize a recently introduced novel nanobilayer technique [Gornall, J. L., Mahendran, K. R., Pambos, O. J., Steinbock, L. J., Otto, O., Chimerel, C., Winterhalter, M., and Keyser, U. F. Simple reconstitution of protein pores in nano lipid bilayers. Nano Lett. 2011, 11 (8), 3334-3340] and its practical aspects for incorporating the biological nanopore α-hemolysin from Staphylococcus aureus and subsequent studies on the translocation of biomolecules under various conditions. This technique provides advantages over classical bilayer methods, especially the quick formation and extended stability of a bilayer. We have also developed a methodology to prepare a uniform quality of giant unilamellar vesicles (GUVs) in a reproducible way for producing nanobilayers. The process and the characteristics of the reconstitution of α-hemolysin in nanobilayers were examined by exploiting various important parameters, including pH, applied voltage, salt concentration, and number of nanopores. Protonation of α-hemolysin residues in the low pH region affects the translocation durations, which, in turn, changes the statistics of event types as a result of electrostatics and potentially the structural changes in DNA. When the pH and applied voltage were varied, it was possible to investigate and partly control the capture rates and type of translocation events through α-hemolysin nanopores. This study could be helpful to use the nanobilayer technique for further explorations, particularly owing to its advantages and technical ease compared to existing bilayer methods.
Current virus detection methods often take significant time or can be limited in sensitivity and specificity. The increasing frequency and magnitude of viral outbreaks in recent decades has resulted in an urgent need for diagnostic methods that are facile, sensitive, rapid and inexpensive. Here, we describe and characterise a novel, calcium-mediated interaction of the surface of enveloped viruses with DNA, that can be used for the functionalisation of intact virus particles via chemical groups attached to the DNA. Using DNA modified with fluorophores, we have demonstrated the rapid and sensitive labelling and detection of influenza and other viruses using single-particle tracking and particle-size determination. With this method, we have detected clinical isolates of influenza in just one minute, significantly faster than existing rapid diagnostic tests. This powerful technique is easily extendable to a wide range of other enveloped pathogenic viruses and holds significant promise as a future diagnostic tool.
Current virus detection methods often take significant time or can be limited in sensitivity and specificity. The increasing frequency and magnitude of viral outbreaks in recent decades has resulted in an urgent need for diagnostic methods that are facile, sensitive, rapid and inexpensive. Here, we describe and characterise a novel, calcium-mediated interaction of the surface of enveloped viruses with DNA, that can be used for the functionalisation of intact virus particles via chemical groups attached to the DNA. Using DNA modified with fluorophores, we have demonstrated the rapid and sensitive labelling and detection of influenza and other viruses using single-particle tracking and particle-size determination. With this method, we have detected clinical isolates of influenza in just one minute, significantly faster than existing rapid diagnostic tests. This powerful technique is easily extendable to a wide range of other enveloped pathogenic viruses and holds significant promise as a future diagnostic tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.