Self-generated movement leads to the attenuation of predicted sensory consequences of the movement. This mechanism ensures that attention is generally not drawn to sensory signals caused by own movement. Such attenuation has been observed across the animal kingdom and in different sensory modalities. In this study we used novel virtual reality (VR) devices to test the hypothesis that the human brain attenuates visual sensation in the area of the visual field where the subject’s hand is currently moving. We conducted three VR experiments where we monitored hand position during movement while the participants performed a visual search task. In the first two experiments we measured response time for salient moving targets and observed that reaction time (RT) is slower for targets that are behind the (invisible) hand. This result provides the first evidence that the visual motion signals generated by the subject’s own hand movement are suppressed. In the third experiment we observed that RT is also slower for colored targets behind the hand. Our findings provide support for the active inference account of sensory attenuation, which posits that attenuation occurs because attention is withdrawn from the sensory consequences of own movement. Furthermore, we demonstrate how modern VR tools could open up new exciting avenues of research for studying the interplay of action and perception.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.