Candidate olfactory receptors of the moth Heliothis virescens were found to be extremely diverse from receptors of the fruitfly Drosophila melanogaster and the mosquito Anopheles gambiae, but there is one exception. The moth receptor type HR2 shares a rather high degree of sequence identity with one olfactory receptor type both from Drosophila (Dor83b) and from Anopheles (AgamGPRor7); moreover, in contrast to all other receptors, this unique receptor type is expressed in numerous antennal neurons. Here we describe the identification of HR2 homologues in two further lepidopteran species, the moths Antheraea pernyi and Bombyx mori, which share 86-88% of their amino acids. In addition, based on RT-PCR experiments HR2 homologues were discovered in antennal cDNA of the honey bee (Apis mellifera; Hymenoptera), the blowfly (Calliphora erythrocephala; Diptera) and the mealworm (Tenebrio molitor; Coleoptera). Comparison of all HR2-related receptors revealed a high degree of sequence conservation across insect orders. In situ hybridization of antennal sections from the bee and the blowfly support the notion that HR2-related receptors are generally expressed in a very large number of antennal cells. This, together with the high degree of conservation suggests that this unique receptor subtype may fulfill a special function in chemosensory neurons of insects.
Pattern formation, oscillations and wave propagation as processes in excitable media can be controlled by small external forces including gravity. The Belousov-Zhabothinsky (BZ) reaction is possibly the best studied system and exhibits temporal as well as spatial patterns. Wave propagation in BZ systems already has been shown to depend on gravity, due to interactions with diffusion and convection. In a stirred bulk BZ system stable oscillations exist in the absence of diffusion, sedimentation, buoyancy and convection with a period in the minute range. In parabolic flight missions such a system can be investigated under gravity conditions changing between 1 g, 1.8 g and μ-g just on this timescale. Here we have found that the temporal pattern formation of an oscillating BZ reaction locks to the period of the gravity changes but is also destabilized due to the partially stochastic nature of the gravity changes. This points out to a gravity dependence of chemical rate constants as given in a formal description of the BZ-system. The BZ-reaction is the perfect system for such studies and serves as a model for selforganization and pattern formation, also in biological systems. The possibility to study the lack of gravity or changes in gravity destabilizing self-organization and pattern formation is of major interest to identify the underlying mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.