Excess circulating uric acid, a product of hepatic glycolysis and purine metabolism, often accompanies metabolic syndrome. However, whether hyperuricemia contributes to development of metabolic syndrome or is merely a by-product of other processes that cause this disorder has not been resolved. Additionally, how uric acid is cleared from the circulation is incompletely understood. Here, we present a genetic model of spontaneous, early-onset metabolic syndrome in mice lacking the enterocyte urate transporter Glut9 (encoded by the SLC2A9 gene). Glut9-deficient mice develop impaired enterocyte uric acid transport kinetics, hyperuricemia, hyperuricosuria, spontaneous hypertension, dyslipidemia, and elevated body fat. Allopurinol, a xanthine oxidase inhibitor, can reverse the hypertension and hypercholesterolemia. These data provide evidence that hyperuricemia per se could have deleterious metabolic sequelae. Moreover, these findings suggest that enterocytes may regulate whole-body metabolism, and that enterocyte urate metabolism could potentially be targeted to modulate or prevent metabolic syndrome.
Aims/hypothesisCarbohydrate-free diet prevents hyperglycaemia and beta cell destruction in the New Zealand Obese (NZO) mouse model. Here we have used a sequential dietary regimen to dissociate the effects of obesity and hyperglycaemia on beta cell function and integrity, and to study glucose-induced alterations of key transcription factors over 16 days.MethodsMice were rendered obese by feeding a carbohydrate-free diet for 18 weeks. Thereafter, a carbohydrate-containing diet was given. Plasma glucose, plasma insulin and total pancreatic insulin were determined, and forkhead box O1 protein (FOXO1) phosphorylation and the transcription factors pancreatic and duodenal homeobox 1 (PDX1), NK6 homeobox 1 protein (NKX6.1) and v-maf musculoaponeurotic fibrosarcoma oncogene family, protein A (avian) (MAFA) were monitored by immunohistochemistry for 16 days.ResultsDietary carbohydrates produced a rapid and continuous increase in plasma glucose in NZO mice between day 2 and 16 after the dietary challenge. Hyperglycaemia caused a dramatic dephosphorylation of FOXO1 at day 2, followed by a progressive depletion of insulin stores. The loss of beta cells was triggered by apoptosis (detectable at day 8), associated with reduction of crucial transcription factors (PDX1, NKX6.1 and MAFA). Incubation of isolated islets from carbohydrate-restricted NZO mice or MIN6 cells with palmitate and glucose for 48 h resulted in a dephosphorylation of FOXO1 and thymoma viral proto-oncogene 1 (AKT) without changing the protein levels of both proteins.Conclusions/interpretationThe dietary regimen dissociates the effects of obesity (lipotoxicity) from those of hyperglycaemia (glucotoxicity) in NZO mice. Obese NZO mice are unable to compensate for the carbohydrate challenge by increasing insulin secretion or synthesising adequate amounts of insulin. In response to the hyperglycaemia, FOXO1 is dephosphorylated, leading to reduced levels of beta cell-specific transcription factors and to apoptosis of the cells.Electronic supplementary materialThe online version of this article (doi:10.1007/s00125-010-1973-8) contains supplementary material, which is available to authorised users.
Beta-cell apoptosis and failure to induce beta-cell regeneration are hallmarks of type 2-like diabetes in mouse models. Here we show that islets from obese, diabetes-susceptible New Zealand Obese (NZO) mice, in contrast to diabetes-resistant C57BL/6J (B6)-ob/ob mice, do not proliferate in response to an in-vivo glucose challenge but lose their beta-cells. Genome-wide RNAseq based transcriptomics indicated an induction of 22 cell cycle-associated genes in B6-ob/ob islets that did not respond in NZO islets. Of all genes differentially expressed in islets of the two strains, seven mapped to the diabesity QTL Nob3, and were hypomorphic in either NZO (Lefty1, Apoa2, Pcp4l1, Mndal, Slamf7, Pydc3) or B6 (Ifi202b). Adenoviral overexpression of Lefty1, Apoa2, and Pcp4l1 in primary islet cells increased proliferation, whereas overexpression of Ifi202b suppressed it. We conclude that the identified genes in synergy with obesity and insulin resistance participate in adaptive islet hyperplasia and prevention from severe diabetes in B6-ob/ob mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.