The adenylate cyclase toxin (CyaA) is one of the major virulence factors of Bordetella pertussis, the causative agent of whooping cough. CyaA is able to invade eukaryotic cells by a unique mechanism that consists in a calcium-dependent, direct translocation of the CyaA catalytic domain across the plasma membrane of the target cells. CyaA possesses a series of a glycine-and aspartate-rich nonapeptide repeats (residues 1006 -1613) of the prototype GGXG(N/D)DX(L/I/F)X (where X represents any amino acid) that are characteristic of the RTX (repeat in toxin) family of bacterial cytolysins. These repeats are arranged in a tandem fashion and may fold into a characteristic parallel -helix or -roll motif that constitutes a novel type of calcium binding structure, as revealed by the three-dimensional structure of the Pseudomonas aeruginosa alkaline protease. Here we have characterized the structure-function relationships of various fragments from the CyaA RTX subdomain. Our results indicate that the RTX functional unit includes both the tandem repeated nonapeptide motifs and the adjacent polypeptide segments, which are essential for the folding and calcium responsiveness of the RTX module. Upon calcium binding to the RTX repeats, a conformational rearrangement of the adjacent non-RTX sequences may act as a critical molecular switch to trigger the CyaA entry into target cells.The adenylate cyclase toxin (CyaA) 2 is one of the major virulence factors of Bordetella pertussis, the causative agent of whooping cough (1-3). The 1706 residue-long CyaA is a bi-functional protein endowed with both catalytic (adenylate cyclase) and hemolytic activities (2, 4, 5). Synthesized as an inactive precursor, it is converted to the active toxin by a post translational palmitoylation of two internal lysine residues (Lys 860 and Lys 983 ) (6, 7). This active CyaA toxin is then able to deliver its catalytic domain directly across the plasma membrane of a variety of eukaryotic cells and disrupts their physiological functions by uncontrolled synthesis of cAMP (5, 8 -11), leading to the cell death by apoptosis (12)(13)(14). CyaA is constructed in a modular fashion; the calmodulinactivated catalytic domain is located in the 400-amino-proximal residues, whereas the C-terminal moiety (residues 400 -1706) is endowed with hemolytic activity (4, 5, 15, 16), which results from its ability to form cation-selective channels in membranes (17,18). It also mediates the binding and internalization of the toxin into eukaryotic cells (5,11,19). The hemolytic and the RTX domains display structural characteristics that link CyaA to the RTX (repeat in toxin) family of bacterial toxins (20, 21). Indeed, it contains a pore-forming domain (from residues 500 -700) with four hydrophobic segments (17,18,22,23), the target site for the post-translational palmitoylation (7, 24), 30 -40 copies of a characteristic glycine-and aspartate-rich nonapeptide repeats (residues 1006 -1613) of the prototype GGXG(N/ D)DX(U)X (X represents any amino acid, and U represents any large ...
570 and Glu 581 by helix-breaking proline or positively charged lysine residue reduced (E570K, E581P) or ablated (E570P, E581K) AC membrane translocation. Moreover, E570P, E570K, and E581P substitutions down-modulated also the specific hemolytic activity of CyaA. In contrast, the E581K substitution enhanced the hemolytic activity of CyaA 4 times, increasing both the frequency of formation and lifetime of toxin pores. Negative charge at position 570, but not at position 581, was found to be essential for cation selectivity of the pore, suggesting a role of Glu 570 in ion filtering inside or close to pore mouth. The pairs of glutamate residues in the predicted transmembrane segments of CyaA thus appear to play a key functional role in membrane translocation and pore-forming activities of CyaA.
The Bordetella adenylate cyclase toxin-hemolysin (CyaA, ACT, or AC-Hly) forms cation-selective membrane channels and delivers into the cytosol of target cells an adenylate cyclase domain (AC) that catalyzes uncontrolled conversion of cellular ATP to cAMP. Both toxin activities were previously shown to depend on post-translational activation of proCyaA to CyaA by covalent palmitoylation of the internal Lys983 residue (K983). CyaA, however, harbors a second RTX acylation site at residue Lys860 (K860), and the role of K860 acylation in toxin activity is unclear. We produced in E. coli the CyaA-K860R and CyaA-K983R toxin variants having the Lys860 and Lys983 acylation sites individually ablated by arginine substitutions. When examined for capacity to form membrane channels and to penetrate sheep erythrocytes, the CyaA-K860R acylated on Lys983 was about 1 order of magnitude more active than CyaA-K983R acylated on Lys860, although, in comparison to intact CyaA, both monoacylated constructs exhibited markedly reduced activities in erythrocytes. Channels formed in lipid bilayers by CyaA-K983R were importantly less selective for cations than channels formed by CyaA-K860R, intact CyaA, or proCyaA, showing that, independent of its acylation status, the Lys983 residue may play a role in toxin structures that determine the distribution of charged residues at the entry or inside of the CyaA channel. While necessary for activity on erythrocytes, acylation of Lys983 was also sufficient for the full activity of CyaA on CD11b+ J774A.1 monocytes. In turn, acylation of Lys860 alone did not permit toxin activity on erythrocytes, while it fully supported the high-affinity binding of CyaA-K983R to the toxin receptor CD11b/CD18 and conferred on CyaA-K983R a reduced but substantial capacity to penetrate and kill the CD11b+ cells. This is the first evidence that acylation of Lys860 may play a role in the biological activity of CyaA, even if redundant to the acylation of Lys983.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.