We present a Godunov type numerical scheme for a class of scalar conservation laws with non-local flux arising for example in traffic flow models. The proposed scheme delivers more accurate solutions than the widely used Lax-Friedrichs type scheme. In contrast to other approaches, we consider a non-local mean velocity instead of a mean density and provide L ∞ and bounded variation estimates for the sequence of approximate solutions. Together with a discrete entropy inequality, we also show the well-posedness of the considered class of scalar conservation laws. The better accuracy of the Godunov type scheme in comparison to Lax-Friedrichs is proved by a variety of numerical examples.
for a class of weighted ENO (WENO) schemes that the parameter ε occurring in the smoothness indicators of the scheme should be chosen proportional to the square of the mesh size, h 2 , to achieve the optimal order of accuracy. Unfortunately, these results cannot be applied to the compact third order WENO reconstruction procedure introduced in [D.
I n this paper, we study the problem of technical transient gas network optimization, which can be considered a minimum cost flow problem with a nonlinear objective function and additional nonlinear constraints on the network arcs. Applying an implicit box scheme to the isothermal Euler equation, we derive a mixed-integer nonlinear program. This is solved by means of a combination of (i) a novel mixed-integer linear programming approach based on piecewise linearization and (ii) a classical sequential quadratic program applied for given combinatorial constraints. Numerical experiments show that better approximations to the optimal control problem can be obtained by using solutions of the sequential quadratic programming algorithm to improve the mixed-integer linear program. Moreover, iteratively applying these two techniques improves the results even further.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.