In this paper we present two empirical scoring functions, PLANTS(CHEMPLP) and PLANTS(PLP), designed for our docking algorithm PLANTS (Protein-Ligand ANT System), which is based on ant colony optimization (ACO). They are related, regarding their functional form, to parts of already published scoring functions and force fields. The parametrization procedure described here was able to identify several parameter settings showing an excellent performance for the task of pose prediction on two test sets comprising 298 complexes in total. Up to 87% of the complexes of the Astex diverse set and 77% of the CCDC/Astex clean listnc (noncovalently bound complexes of the clean list) could be reproduced with root-mean-square deviations of less than 2 A with respect to the experimentally determined structures. A comparison with the state-of-the-art docking tool GOLD clearly shows that this is, especially for the druglike Astex diverse set, an improvement in pose prediction performance. Additionally, optimized parameter settings for the search algorithm were identified, which can be used to balance pose prediction reliability and search speed.
The prediction of the complex structure of a small ligand with a protein, the socalled protein-ligand docking problem, is a central part of the rational drug design process. For this purpose, we introduce the docking algorithm PLANTS (Protein-Ligand ANT System), which is based on ant colony optimization, one of the most successful swarm intelligence techniques. We study the effectiveness of PLANTS for several parameter settings and present a direct comparison of PLANTS's performance to a state-of-the-art program called GOLD, which is based on a genetic algorithm and frequently used in the pharmaceutical industry for this task. Last but not least, we also show that PLANTS can make effective use of protein flexibility giving example results on cross-docking and virtual screening experiments for protein kinase A.
A major problem in structure-based virtual screening applications is the appropriate selection of a single or even multiple protein structures to be used in the virtual screening process. A priori it is unknown which protein structure(s) will perform best in a virtual screening experiment. We investigated the performance of ensemble docking, as a function of ensemble size, for eight targets of pharmaceutical interest. Starting from single protein structure docking results, for each ensemble size up to 500,000 combinations of protein structures were generated, and, for each ensemble, pose prediction and virtual screening results were derived. Comparison of single to multiple protein structure results suggests improvements when looking at the performance of the worst and the average over all single protein structures to the performance of the worst and average over all protein ensembles of size two or greater, respectively. We identified several key factors affecting ensemble docking performance, including the sampling accuracy of the docking algorithm, the choice of the scoring function, and the similarity of database ligands to the cocrystallized ligands of ligand-bound protein structures in an ensemble. Due to these factors, the prospective selection of optimum ensembles is a challenging task, shown by a reassessment of published ensemble selection protocols.
This paper addresses two questions of key interest to researchers working with protein-ligand docking methods: (i) Why is there such a large variation in docking performance between different test sets reported in the literature? (ii) Are fragments more difficult to dock than druglike compounds? To answer these, we construct a test set of in-house X-ray structures of protein-ligand complexes from drug discovery projects, half of which contain fragment ligands, the other half druglike ligands. We find that a key factor affecting docking performance is ligand efficiency (LE). High LE compounds are significantly easier to dock than low LE compounds, which we believe could explain the differences observed between test sets reported in the literature. There is no significant difference in docking performance between fragments and druglike compounds, but the reasons why dockings fail appear to be different.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.