Protein dynamics are essential for protein function, and yet it has been challenging to access the underlying atomic motions in solution on nanosecond-to-microsecond time scales. We present a structural ensemble of ubiquitin, refined against residual dipolar couplings (RDCs), comprising solution dynamics up to microseconds. The ensemble covers the complete structural heterogeneity observed in 46 ubiquitin crystal structures, most of which are complexes with other proteins. Conformational selection, rather than induced-fit motion, thus suffices to explain the molecular recognition dynamics of ubiquitin. Marked correlations are seen between the flexibility of the ensemble and contacts formed in ubiquitin complexes. A large part of the solution dynamics is concentrated in one concerted mode, which accounts for most of ubiquitin's molecular recognition heterogeneity and ensures a low entropic complex formation cost.
Protein NMR chemical shifts are highly sensitive to local structure. A robust protocol is described that exploits this relation for de novo protein structure generation, using as input experimental parameters the 13 C ␣ , 13 C  , 13 C , 15 N, 1 H ␣ and 1 H N NMR chemical shifts. These shifts are generally available at the early stage of the traditional NMR structure determination process, before the collection and analysis of structural restraints. The chemical shift based structure determination protocol uses an empirically optimized procedure to select protein fragments from the Protein Data Bank, in conjunction with the standard ROSETTA Monte Carlo assembly and relaxation methods. Evaluation of 16 proteins, varying in size from 56 to 129 residues, yielded full-atom models that have 0.7-1.8 Å root mean square deviations for the backbone atoms relative to the experimentally determined x-ray or NMR structures. The strategy also has been successfully applied in a blind manner to nine protein targets with molecular masses up to 15.4 kDa, whose conventional NMR structure determination was conducted in parallel by the Northeast Structural Genomics Consortium. This protocol potentially provides a new direction for high-throughput NMR structure determination. molecular fragment replacement ͉ protein structure prediction ͉ ROSETTA ͉ structural genomics
We have recently completed a full re-architecturing of the Rosetta molecular modeling program, generalizing and expanding its existing functionality. The new architecture enables the rapid prototyping of novel protocols by providing easy to use interfaces to powerful tools for molecular modeling. The source code of this rearchitecturing has been released as Rosetta3 and is freely available for academic use. At the time of its release, it contained 470,000 lines of code. Counting currently unpublished protocols at the time of this writing, the source includes 1,285,000 lines. Its rapid growth is a testament to its ease of use. This document describes the requirements for our new architecture, justifies the design decisions, sketches out central classes, and highlights a few of the common tasks that the new software can perform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.