We prove that a generalisation of simple Hurwitz numbers due to Johnson, Pandharipande and Tseng satisfy the topological recursion of Eynard and Orantin. This generalises the Bouchard-Mariño conjecture and places Hurwitz-Hodge integrals, which arise in the Gromov-Witten theory of target curves with orbifold structure, in the context of the Eynard-Orantin topological recursion.
We further the study of the Donaldson–Thomas theory of the banana 3-folds which were recently discovered and studied by Bryan [3]. These are smooth proper Calabi–Yau 3-folds which are fibred by Abelian surfaces such that the singular locus of a singular fibre is a non-normal toric curve known as a ‘banana configuration’. In [3], the Donaldson–Thomas partition function for the rank 3 sub-lattice generated by the banana configurations is calculated. In this article, we provide calculations with a view towards the rank 4 sub-lattice generated by a section and the banana configurations. We relate the findings to the Pandharipande–Thomas theory for a rational elliptic surface and present new Gopakumar–Vafa invariants for the banana 3-fold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.