We provide easy to verify sufficient conditions for the consistency and asymptotic normality of a class of semiparametric optimization estimators where the criterion function does not obey standard smoothness conditions and simultaneously depends on some nonparametric estimators that can themselves depend on the parameters to be estimated. Our results extend existing theories such as those of Pakes and Pollard (1989), Andrews (1994a. We also show that bootstrap provides asymptotically correct confidence regions for the finite dimensional parameters. We apply our results to two examples: a 'hit rate' and a partially linear median regression with some endogenous regressors.
We propose a procedure for estimating the critical values of the extended Kolmogorov-Smirnov tests of Stochastic Dominance of arbitrary order in the general K-prospect case. We allow for the observations to be serially dependent and, for the first time, we can accommodate general dependence amongst the prospects which are to be ranked. Also, the prospects may be the residuals from certain conditional models, opening the way for conditional ranking. We also propose a test of Prospect Stochastic Dominance. Our method is based on subsampling and we show that the resulting tests are consistent and powerful against some N -½ local alternatives. We also propose some heuristic methods for selecting subsample size and demonstrate in simulations that they perform reasonably. We describe an alternative method for obtaining critical values based on recentring the test statistic and using full sample bootstrap methods. We compare the two methods in theory and in practice.
This paper proposes the cross-quantilogram to measure the quantile dependence between two time series. We apply it to test the hypothesis that one time series has no directional predictability to another time series. We establish the asymptotic distribution of the cross-quantilogram and the corresponding test statistic. The limiting distributions depend on nuisance parameters. To construct consistent confidence intervals we employ a stationary bootstrap procedure; we establish consistency of this bootstrap. Also, we consider a self-normalized approach, which yields an asymptotically pivotal statistic under the null hypothesis of no predictability. We provide simulation studies and two empirical applications. First, we use the cross-quantilogram to detect predictability from stock variance to excess stock return. Compared to existing tools used in the literature of stock return predictability, our method provides a more complete relationship between a predictor and stock return. Second, we investigate the systemic risk of individual financial institutions, such as JP Morgan Chase, Morgan Stanley and AIG.
We derive the asymptotic distribution of a new backfitting procedure for estimating the closest additive approximation to a nonparametric regression function. The procedure employs a recent projection interpretation of popular kernel estimators provided by Mammen, Marron, Turlach and Wand and the asymptotic theory of our estimators is derived using the theory of additive projections reviewed in Bickel, Klaassen, Ritov and Wellner. Our procedure achieves the same bias and variance as the oracle estimator based on knowing the other components, and in this sense improves on the method analyzed in Opsomer and Ruppert. We provide ''high level'' conditions independent of the sampling scheme. We then verify that these conditions are satisfied in a regression and a time series autoregression under weak conditions.
Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Qihua Wang, Oliver Linton and Wolfgang Härdle * Abstract We develop inference tools in a semiparametric partially linear regression model with missing response data. A class of estimators is defined that includes as special cases: a semiparametric regression imputation estimator, a marginal average estimator and a (marginal) propensity score weighted estimator. We show that any of our class of estimators is asymptotically normal. The three special estimators have the same asymptotic variance. They achieve the semiparametric efficiency bound in the homoskedastic Gaussian case. We show that the Jackknife method can be used to consistently estimate the asymptotic variance. Our model and estimators are defined with a view to avoid the curse of dimensionality, that severely limits the applicability of existing methods. The empirical likelihood method is developed. It is shown that when missing responses are imputed using the semiparametric regression method the empirical log-likelihood is asymptotically a scaled chi-square variable. An adjusted empirical log-likelihood ratio, which is asymptotically standard chi-square, is obtained. Also, a bootstrap empirical log-likelihood ratio is derived and its distribution is used to approximate that of the imputed empirical log-likelihood ratio. A simulation study is conducted to compare the adjusted and bootstrap empirical likelihood with the normal approximation based method in terms of coverage accuracies and average lengths of confidence intervals. Based on biases and standard errors, a comparison is also made by simulation between the proposed estimators and the related estimators. Terms of use: Documents in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.