Hard turning is used as a finishing process to machine hardened parts with very high accuracies. During the last decades it asserted as an alternative to conventional grinding processes due to higher flexibility and productivity. Furthermore, hard turning also increases positive effects on the surface integrity compared to grinding processes. Process parameters such as cutting speed, feed and cutting edge geometry influence the effect on subsurface area as well as the surface roughness. Many researchers have been analyzing these effects during the last years. However, they all cover one or two aspects of the surface integrity. Due to the fact that all researchers applied different experimental conditions it is almost impossible to compare the effects of hard turning on the surface integrity. The presented paper covers the effects of cutting speed, feed and cutting edge radius on the main factors of surface integrity residual stress, roughness, microstructure and hardness of roller bearings in a summarizing overview to identify the optimal parameter values for machining roller bearings with an increased endurance. Hard turning tests are conducted and the effects on residual stresses, surface roughness, hardness and white layers are analyzed. This overall view on surface integrity of roller bearings is necessary to improve the endurance of bearings due to a specific surface integrity design. The interactions between the surface integrity and the expected resulting endurance are discussed at the end of this article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.