Recently reported insect declines have raised both political and social concern. Although the declines have been attributed to land use and climate change, supporting evidence suffers from low taxonomic resolution, short time series, a focus on local scales, and the collinearity of the identified drivers. In this study, we conducted a systematic assessment of insect populations in southern Germany, which showed that differences in insect biomass and richness are highly context dependent. We found the largest difference in biomass between semi-natural and urban environments (−42%), whereas differences in total richness (−29%) and the richness of threatened species (−56%) were largest from semi-natural to agricultural environments. These results point to urbanization and agriculture as major drivers of decline. We also found that richness and biomass increase monotonously with increasing temperature, independent of habitat. The contrasting patterns of insect biomass and richness question the use of these indicators as mutual surrogates. Our study provides support for the implementation of more comprehensive measures aimed at habitat restoration in order to halt insect declines.
We present the results of individual-based simulation experiments on the evolution of dispersal rates of organisms living in metapopulations. We find conflicting results regarding the relationship between local extinction rate and evolutionarily stable (ES) dispersal rate depending on which principal mechanism causes extinction: if extinction is caused by environmental catastrophes eradicating local populations, we observe a positive correlation between extinction and ES dispersal rate; if extinction is a consequence of stochastic local dynamics and environmental fluctuations, the correlation becomes ambiguous; and in cases where extinction is caused by dispersal mortality, a negative correlation between local extinction rate and ES dispersal rate emerges. We conclude that extinction rate, which both affects and is affected by dispersal rates, is not an ideal predictor for optimal dispersal rates.
Ants that get injured during predation on termites get saved by their nestmates and recover inside the nest.
Mass-flowering crops may affect long-term population dynamics, but effects on pollinators have never been studied across several years. We monitored wild bees in oilseed rape fields in 16 landscapes in Germany in two consecutive years. Effects on bee densities of landscape oilseed rape cover in the years of monitoring and in the previous years were evaluated with landscape data from three consecutive years. We fit empirical data to a mechanistic model to provide estimates for oilseed rape attractiveness and its effect on bee productivity in comparison to the rest of the landscape, and we evaluated consequences for pollinator densities in consecutive years. Our results show that high oilseed rape cover in the previous year enhances current densities of wild bees (except for bumble bees). Moreover, we show a strong attractiveness of and dilution on (i.e., decreasing bee densities with increasing landscape oilseed rape cover) oilseed rape for bees during flowering in the current year, modifying the effect of the previous year's oilseed rape cover in the case of wild bees (excluding Bombus). As long as other factors such as nesting sites or natural enemies do not limit bee reproduction, our findings suggest long-term positive effects of mass-flowering crops on bee populations, at least for non-Bombus generalists, which possibly help to maintain crop pollination services even when crop area increases. Similar effects are conceivable for other organisms providing ecosystem services in annual crops and should be considered in future studies.
Artificial lights have become an integral and welcome part of our urban and peri-urban environments. However, recent research has highlighted the potentially negative ecological consequences of ubiquitous artificial light. In particular, insects, especially moths, are expected to be negatively impacted by the presence of artificial lights. Previous research with light traps has shown a male-biased attraction to light in moths. In this study, we sought to determine whether street lights could limit moth dispersal and whether there was any sex bias in attraction to light. More specifically, we aimed to determine sex-specific attraction radii for moths to street lights. We tested these hypotheses by collecting moths for 2 years at an experimental set-up. To estimate the attraction radii, we developed a Markov model and related it to the acquired data. Utilizing multinomial statistics, we found that attraction rates to lights in the middle of the matrix were substantially lower than predicted by the null hypothesis of equal attraction level (0·44 times). With the Markov model, we estimated that a corner light was 2·77 times more attractive than a wing light with an equivalentre attraction radius of c. 23 m around each light. We found neither sexual differences in the attraction rate nor in the attraction radius of males and females. Since we captured three times more males than females, we conclude that sex ratios are representative of operational sex ratios or of different flight activities. These results provide evidence for street lights to limit moth dispersal, and that they seem to act equally on male and female moths. Consequently, public lighting might divide a suitable landscape into many small habitats. Therefore, it is reasonable to assume (i) that public lighting near hedges and bushes or field margins reduces the quality of these important habitat structures and (ii) that public lighting may affect moth movement between patches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.