This paper presents a development of a microtransformer device fabricated using MEMS technology. The device is designed for higher switching frequencies beyond to 50 MHz power applications. The microtransformer features a closed magnetic core and six identity coils (three coils on primary and three coils on secondary side). Depending on connecting technique, this design allows a wide flexibility to set different values of inductance and of transformer winding ratio. As a magnetic core material Fe-Co alloy is applied, this device shows a significant improvement compared to the first fabricated prototypes with Ni-Fe magnetic core.
Abstract. This paper describes a development of a microtransformer device fabricated using thin film technology. The device is designed for higher switching frequencies beyond to 50 MHz power applications. A especially by the microtransformer is a design, which allows wide flexibility of a device by choosing a different values of an inductance and of a windings ratio. The microtransformer device is integrated on silicon substrate consisting of a closed magnetic core and six coils. Both, primary and secondary device side consist three coils. Therefore, this design allows using of a device for different switching frequencies. As a magnetic material for transformer core a permalloy NiFe45/55 was chosen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.