Establishing peer-to-peer (P2P) file sharing for mobile ad hoc networks (MANET) requires the construction of a search algorithm for transmitting queries and search results as well as the development of a transfer protocol for downloading files matching a query. In this paper, we present a specialpurpose system for searching and file transfer tailored to both the characteristics of MANET and the requirements of peer-topeer file sharing. Our approach is based on an application layer overlay network. As innovative feature, overlay routes are set up on demand by the search algorithm, closely matching network topology and transparently aggregating redundant transfer paths on a per-file basis. The transfer protocol guarantees low transmission overhead and a high fraction of successful downloads by utilizing overlay routes. In a detailed ns-2 simulation study, we show that both the search algorithm and the transfer protocol outperform off-the-shelf approaches based on a P2P file sharing system for the wireline Internet, TCP and a MANET routing protocol.
This paper characterizes the query behavior of peers in a peer-topeer (P2P) file sharing system. In contrast to previous work, which provides various aggregate workload statistics, we characterize peer behavior in a form that can be used for constructing representative synthetic workloads for evaluating new P2P system designs. In particular, the analysis exposes heterogeneous behavior that occurs on different days, in different geographical regions (i.e., Asia, Europe, and North America) or during different periods of the day. The workload measures include the fraction of connected sessions that are passive (i.e., issue no queries), the duration of such sessions, and for each active session, the number of queries issued, time until first query, query interarrival time, time after last query, and distribution of query popularity. Moreover, the key correlations in these workload measures are captured in the form of conditional distributions, such that the correlations can be accurately reproduced in a synthetic workload. The characterization is based on trace data gathered in the Gnutella P2P system over a period of 40 days. To characterize system-independent user behavior, we eliminate queries that are specific to the Gnutella system software, such as re-queries that are automatically issued by some client implementations to improve system responsiveness.
Epidemic algorithms have recently been proposed as an effective solution for disseminating information in large-scale peer-to-peer (P2P) systems and in mobile ad hoc networks (MANET). In this paper, we present a modeling approach for steady-state analysis of epidemic dissemination of information in MANET. As major contribution, the introduced approach explicitly represents the spread of multiple data items, finite buffer capacity at mobile devices and a least recently used buffer replacement scheme. Using the introduced modeling approach, we analyze seven degrees of separation (7DS) as one well-known approach for implementing P2P data sharing in a MANET using epidemic dissemination of information. A validation of results derived from the analytical model against simulation shows excellent agreement. Quantitative performance curves derived from the analytical model yield several insights for optimizing the system design of 7DS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.