In pixel-level image sequence fusion, a composite image sequence has to be built of several spatially registered input image sequences. One of the primary goals in image sequence fusion is the temporal stability and consistency of the fused image sequence. To fulfill the preceding desiderata, we propose a novel approach based on a shift invariant extension of the 2D discrete wavelet transform, which yields an overcomplete and thus shift invariant multiresolution signal representation. The advantage of the shift invariant fusion method is the improved temporal stability and consistency of the fused sequence, compared to other multiresolution fusion methods. To evaluate temporal stability and consistency of the fused sequence we introduce a quality measure based on the mutual information between the inter-frame-differences (IFD) of the input sequences and the fused image sequence. If the mutual information is high, the information in the IFD of the fused sequence is low with respect to the information present in the IFDs of the input sequences, indicating a stable and consistent fused image sequence. We evaluate the performance of several multiresolution fusion schemes on a real word image sequence pair and show that the shift invariant fusion method outperforms the other multiresolution fusion methods with respect to temporal stability and consistency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.