BackgroundConsiderable declines in malaria have accompanied increased funding for control since the year 2000, but historical failures to maintain gains against the disease underscore the fragility of these successes. Although malaria transmission can be suppressed by effective control measures, in the absence of active intervention malaria will return to an intrinsic equilibrium determined by factors related to ecology, efficiency of mosquito vectors, and socioeconomic characteristics. Understanding where and why resurgence has occurred historically can help current and future malaria control programmes avoid the mistakes of the past.MethodsA systematic review of the literature was conducted to identify historical malaria resurgence events. All suggested causes of these events were categorized according to whether they were related to weakened malaria control programmes, increased potential for malaria transmission, or technical obstacles like resistance.ResultsThe review identified 75 resurgence events in 61 countries, occurring from the 1930s through the 2000s. Almost all resurgence events (68/75 = 91%) were attributed at least in part to the weakening of malaria control programmes for a variety of reasons, of which resource constraints were the most common (39/68 = 57%). Over half of the events (44/75 = 59%) were attributed in part to increases in the intrinsic potential for malaria transmission, while only 24/75 (32%) were attributed to vector or drug resistance.ConclusionsGiven that most malaria resurgences have been linked to weakening of control programmes, there is an urgent need to develop practical solutions to the financial and operational threats to effectively sustaining today’s successful malaria control programmes.
SummaryIn the past 150 years, roughly half of the countries in the world eliminated malaria. Nowadays, there are 99 endemic countries—67 are controlling malaria and 32 are pursuing an elimination strategy. This four-part Series presents evidence about the technical, operational, and financial dimensions of malaria elimination. The first paper in this Series reviews definitions of elimination and the state that precedes it: controlled low-endemic malaria. Feasibility assessments are described as a crucial step for a country transitioning from controlled low-endemic malaria to elimination. Characteristics of the 32 malaria-eliminating countries are presented, and contrasted with countries that pursued elimination in the past. Challenges and risks of elimination are presented, including Plasmodium vivax, resistance in the parasite and mosquito populations, and potential resurgence if investment and vigilance decrease. The benefits of elimination are outlined, specifically elimination as a regional and global public good. Priorities for the next decade are described.
BackgroundMalaria endemicity in Zanzibar has reached historically low levels, and the epidemiology of malaria transmission is in transition. To capitalize on these gains, Zanzibar has commissioned a feasibility assessment to help inform on whether to move to an elimination campaign. Declining local transmission has refocused attention on imported malaria. Recent studies have shown that anonimized mobile phone records provide a valuable data source for characterizing human movements without compromizing the privacy of phone users. Such movement data in combination with spatial data on P. falciparum endemicity provide a way of characterizing the patterns of parasite carrier movements and the rates of malaria importation, which have been used as part of the malaria elimination feasibility assessment for the islands of Zanzibar.Data and MethodsRecords encompassing three months of complete mobile phone usage for the period October-December 2008 were obtained from the Zanzibar Telecom (Zantel) mobile phone network company, the principal provider on the islands of Zanzibar. The data included the dates of all phone usage by 770,369 individual anonymous users. Each individual call and message was spatially referenced to one of six areas: Zanzibar and five mainland Tanzania regions. Information on the numbers of Zanzibar residents travelling to the mainland, locations visited and lengths of stay were extracted. Spatial and temporal data on P. falciparum transmission intensity and seasonality enabled linkage of this information to endemicity exposure and, motivated by malaria transmission models, estimates of the expected patterns of parasite importation to be made.ResultsOver the three month period studied, 88% of users made calls that were routed only through masts on Zanzibar, suggesting that no long distance travel was undertaken by this group. Of those who made calls routed through mainland masts the vast majority of trips were estimated to be of less than five days in length, and to the Dar Es Salaam Zantel-defined region. Though this region covered a wide range of transmission intensities, data on total infection numbers in Zanzibar combined with mathematical models enabled informed estimation of transmission exposure and imported infection numbers. These showed that the majority of trips made posed a relatively low risk for parasite importation, but risk groups visiting higher transmission regions for extended periods of time could be identified.ConclusionAnonymous mobile phone records provide valuable information on human movement patterns in areas that are typically data-sparse. Estimates of human movement patterns from Zanzibar to mainland Tanzania suggest that imported malaria risk from this group is heterogeneously distributed; a few people account for most of the risk for imported malaria. In combination with spatial data on malaria endemicity and transmission models, movement patterns derived from phone records can inform on the likely sources and rates of malaria importation. Such information is important fo...
BackgroundWHO estimates that only 3% of fever patients use recommended artemisinin-based combination therapies (ACTs), partly reflecting their high prices in the retail sector from where many patients seek treatment. To overcome this challenge, a global ACT subsidy has been proposed. We tested this proposal through a pilot program in rural Tanzania.Methods/Principal FindingsThree districts were assigned to serve either as a control or to receive the subsidy plus a package of supporting interventions. From October 2007, ACTs were sold at a 90% subsidy through the normal private supply chain to intervention district drug shops. Data were collected at baseline and during intervention using interviews with drug shop customers, retail audits, mystery shoppers, and audits of public and NGO facilities.The proportion of consumers in the intervention districts purchasing ACTs rose from 1% at baseline to 44.2% one year later (p<0.001), and was significantly higher among consumers purchasing for children under 5 than for adults (p = 0.005). No change in ACT usage was observed in the control district. Consumers paid a mean price of $0.58 for ACTs, which did not differ significantly from the price paid for sulphadoxine-pyrimethamine, the most common alternative. Drug shops in population centers were significantly more likely to stock ACTs than those in more remote areas (p<0.001).ConclusionsA subsidy introduced at the top of the private sector supply chain can significantly increase usage of ACTs and reduce their retail price to the level of common monotherapies. Additional interventions may be needed to ensure access to ACTs in remote areas and for poorer individuals who appear to seek treatment at drug shops less frequently.Trial RegistrationControlled-Trials.com ISRCTN39125414.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.