The growing demands of advanced fluorescence and super-resolution microscopy benefit from the development of small and highly photostable fluorescent probes. Techniques developed to expand the genetic code permit the residue-specific encoding of unnatural amino acids (UAAs) armed with novel clickable chemical handles into proteins in living cells. Here we present the design of new UAAs bearing strained alkene side chains that have improved biocompatibility and stability for the attachment of tetrazine-functionalized organic dyes by the inverse-electron-demand Diels-Alder cycloaddition (SPIEDAC). Furthermore, we fine-tuned the SPIEDAC click reaction to obtain an orthogonal variant for rapid protein labeling which we termed selectivity enhanced (se) SPIEDAC. seSPIEDAC and SPIEDAC were combined for the rapid labeling of live mammalian cells with two different fluorescent probes. We demonstrate the strength of our method by visualizing insulin receptors (IRs) and virus-like particles (VLPs) with dual-color super-resolution microscopy.
The correct organization of single subunits of multi-protein machines in a three dimensional context is critical for their functionality. Type III secretion systems (T3SS) are molecular machines with the capacity to deliver bacterial effector proteins into host cells and are fundamental for the biology of many pathogenic or symbiotic bacteria. A central component of T3SSs is the needle complex, a multiprotein structure that mediates the passage of effector proteins through the bacterial envelope. We have used cryo electron microscopy combined with bacterial genetics, site-specific labeling, mutational analysis, chemical derivatization and high-resolution mass spectrometry to generate an experimentally validated topographic map of a Salmonella typhimurium T3SS needle complex. This study provides insights into the organization of this evolutionary highly conserved nanomachinery and is the basis for further functional analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.