This paper considers the object detection and tracking problem in a road traffic situation from a traffic participant’s perspective. The information source is an automotive radar which is attached to the ego vehicle. The scenario characteristics are varying object visibility due to occlusion and multiple detections of a vehicle during a scanning interval. The goal is to maintain and report the state of undetected though possibly present objects. The proposed algorithm is based on the multi-object Probability Hypothesis Density filter. Because the PHD filter has no memory, the estimate of the number of objects present can change abruptly due to erroneous detections. To reduce this effect, we model the occlusion of the object to calculate the state-dependent detection probability. Thus, the filter can maintain unnoticed but probably valid hypotheses for a more extended period. We use the sequential Monte Carlo method with clustering for implementing the filter. We distinguish between detected, undetected, and hidden particles within our framework, whose purpose is to track hidden but likely present objects. The performance of the algorithm is demonstrated using highway radar measurements.
Advanced driver assistance systems and highly automated driving functions require an enhanced frontal perception system. The requirements of a frontal environment perception system cannot be satisfied by either of the existing automotive sensors. A commonly used sensor cluster for these functions consists of a mono-vision smart camera and automotive radar. The sensor fusion is intended to combine the data of these sensors to perform a robust environment perception. Multi-object tracking algorithms have a suitable software architecture for sensor data fusion. Several multi-object tracking algorithms, such as JPDAF or MHT, have good tracking performance; however, the computational requirements of these algorithms are significant according to their combinatorial complexity. The GM-PHD filter is a straightforward algorithm with favorable runtime characteristics that can track an unknown and time-varying number of objects. However, the conventional GM-PHD filter has a poor performance in object cardinality estimation. This paper proposes a method that extends the GM-PHD filter with an object birth model that relies on the sensor detections and a robust object extraction module, including Bayesian estimation of objects' existence probability to compensate for drawbacks of the conventional algorithm.
Robust object tracking and maneuver estimation methods play significant role in the design of advanced driver assistant systems and self-driving cars. As an input to situation understanding and awareness, the performance of such algorithms influences the overall effectiveness of motion planning and plays high role in safety. The paper examines the suitability of different probabilistic state estimation methods, namely, the Extended Kalman Filter (EKF) and the more general Particle Filter (PF) with the addition of the Interacting Multiple Model (IMM) approach. These algorithms are not capable of predicting motion for long term in road traffic conditions, though their robustness and model classification capability are essential for the overall system. The performance is evaluated in road traffic scenarios where the tracked object imitates the motion characteristics of a road vehicle and is observed from a stationary sensor. The measurements are generated according to standard automotive radar models. The analysis conducted along two aspects emphasizes the different performance and scaling properties of the examined state estimation algorithms. The presented evaluation framework serves as a customizable method to test and develop advanced autonomous functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.