Land cover changes (LCCs) play an important role in the climate system. Research over recent decades highlights the impacts of these changes on atmospheric temperature, humidity, cloud cover, circulation, and precipitation. These impacts range from the local-and regional-scale to sub-continental and global-scale. It has been found that the impacts of regional-scale LCC in one area may also be manifested in other parts of the world as a climatic teleconnection. In light of these findings, this article provides an overview and synthesis of some of the most notable types of LCC and their impacts on climate. These LCC types include agriculture, deforestation and afforestation, desertification, and urbanization. In addition, this article provides a discussion on challenges to, and future research directions in, assessing the climatic impacts of LCC.
[1] Changes in active layer thickness (ALT) over northern high-latitude permafrost regions have important impacts on the surface energy balance, hydrologic cycle, carbon exchange between the atmosphere and the land surface, plant growth, and ecosystems as a whole. This study examines the 20th century variations of ALT for the Ob, Yenisey, and Lena River basins. ALT is estimated from historical soil temperature measurements from 17 stations , Lena basin only), an annual thawing index based on both surface air temperature data and numerical modeling . The latter two provide spatial fields. Based on the thawing index, the long-term average ALT is about 1.87 m in the Ob, 1.67 in the Yenisey, and 1.69 m in the Lena basin. Over the past several decades, ALT over the three basins shows positive trends, but with different magnitudes. Based on the 17 stations, ALT increased about 0.32 m between 1956 and 1990 in the Lena. To the extent that results based on the soil temperatures represent ground ''truth,'' ALT obtained from both the thawing index and numerical modeling is underestimated. It is widely believed that ALT will increase with global warming. However, this hypothesis needs further refinement since ALT responds primarily to summer air temperature while observed warming has occurred mainly in winter and spring. It is also shown that ALT exhibits complex and inconsistent responses to variations in snow cover.Citation: Zhang, T., et al. (2005), Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin,
[1] Seasonal freezing and thawing processes in cold regions play a major role in ecosystem diversity, productivity, and the Arctic hydrological system. Long-term changes in seasonal freeze and thaw depths are also important indicators of climate change. Only sparse historical measurements of seasonal freeze and thaw depths are available for permafrost and seasonally frozen ground regions. Using mean monthly soil temperature data for for 242 stations located throughout Russia, we employed a linear interpolation method to determine the depth of the 0°C isotherm based on soil temperature data measured between 0.2 m and 3.2 m depth. The relationship between available observed annual maximum freeze and thaw depths and our interpolated values indicates a perfect correlation. A comprehensive evaluation of long-term trends in these new interpolated data for Russia indicates that in permafrost regions, active layer depths have been steadily increasing. In the period 1956-1990 the active layer exhibited a statistically significant deepening by approximately 20 cm. The changes in the seasonally frozen ground areas are even greater: The depth of the freezing layer decreased 34 cm between 1956 and 1990. Potential forcings of the observed changes include air temperature, freezing and thawing index, and snow depth. Correlation and multiple regression reveal that active layer depth is most strongly related to snow depth. Air temperature, both mean annual and thawing index, is also significantly related to changes in the active layer. Freeze depth is influenced most strongly by the freezing index and mean annual air temperature, although snow depth is also a significant contributor. Air temperature and snow depth have been changing less in the seasonally frozen ground regions of Russia compared to permafrost regions, although observed changes in freeze depth are greater than changes in active layer depth for . This indicates that the seasonally frozen ground regions of the Russian high latitudes are more susceptible to climate change than the Russian permafrost. However, as temperatures have been rising, especially in the high-latitude continental regions, both permafrost and seasonally frozen ground regions are being greatly impacted. These changes can potentially result in increased river runoff and changes in discharge throughout the Russian Arctic drainage basin, as well as changes in high-latitude ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.