Abstract.A basic task of rescue robot systems is mapping of the environment. Localizing injured persons, guiding rescue workers and excavation equipment requires a precise 3D map of the environment. This paper presents a new 3D laser range finder and novel scan matching method for the robot Kurt3D [9]. Compared to previous machinery [12], the apex angle is enlarged to 360 • . The matching is based on semantic information. Surface attributes are extracted and incorporated in a forest of search trees in order to associate the data, i.e., to establish correspondences. The new approach results in advances in speed and reliability.
Quite a number of approaches for solving the simultaneous localization and mapping (SLAM) problem exist by now. Some of them have recently been extended to mapping environments with six-degree-of-freedom poses, yielding 6D SLAM approaches. To demonstrate the capabilities of the respective algorithms, it is common practice to present generated maps and successful loop closings in large outdoor environments. Unfortunately, it is nontrivial to compare different 6D SLAM approaches objectively, because ground truth data about the outdoor environments used for demonstration are typically unavailable. We present a novel benchmarking method for generating the ground truth data based on reference maps. The method is then demonstrated by comparing the absolute performance of some previously existing 6D SLAM algorithms that build a large urban outdoor map. C
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.