The composition of crude algal oil was analyzed and determined by several methods. Oil was converted to polyols by ozonolysis, epoxidation, and hydroformylation. Ozonolysis gave a polyol with lighter color but a low OH number and was unsuitable for polyurethane applications. Epoxidation also improved the color and gave a polyol with an OH number around 150 mg KOH/g, which with diphenylmethane diisocyanate gave a homogeneous, rubbery, transparent sheet. Desirable rigid foams were prepared with the addition of water to the formulation. Hydroformylation was carried out successfully giving an OH number of about 150 mg KOH/g, but the polyol was black. Casting the polyurethane sheet was difficult due to the very high reactivity of the polyol. Polyurethane foam of lower quality than from epoxidation polyol was obtained. More work on optimization of the foaming system would improve the foam. Crude algal oil is a viable starting material for the production of polyols. Better results would be obtained from refined algal oils.
Isosorbide, a cyclic, rigid and renewable diol, was used as a chain extender in two series of thermoplastic polyurethanes (PUs). Isosorbide was used alone or in combination with butanediol to examine the effects on the morphology of PU. Two series of materials were prepared -one with dispersed hard domains in a matrix of polytetramethylene ether glycol soft segments of molecular weight 1400 g mol −1 (at 70 wt% soft segment concentration, SSC) and the other with co-continuous soft and hard phases at 50 wt% SSC. We investigated the detailed morphology of these materials with optical and atomic force microscopy, as well as ultra-small-angle X-ray scattering. The atomic force microscopy measurements confirmed the different morphologies in PUs with 50 wt% SSC and with 70 wt% SSC. Small-angle X-ray scattering data showed that in PU with 70 wt% SSC, the hard domain size varied between 2.4 and 2.9 nm, and decreased with increasing isosorbide content. In PU with 70 wt% SSC, we found that the correlation length and average repeat distances became smaller with increasing isosorbide content. We estimated the thickness of the diffuse phase boundary for PU with 70 wt% SSC to be ca 0.5 nm, decreasing slightly with increasing isosorbide content.
Isosorbide, a renewable diol derived from starch, was used alone or in combination with butane diol (BD) as the chain extender in two series of thermoplastic polyurethanes (TPU) with 50 and 70% polytetramethylene ether glycol (PTMEG) soft segment concentration (SSC), respectively. In the synthesized TPUs, the hard segment composition was systematically varied in both series following BD/isosorbide molar ratios of 100 : 0; 75 : 25; 50 : 50; 25 : 75, and 0 : 100 to examine in detail the effect of chain extenders on properties of segmented polyurethane elastomers with different morphologies. We found that polyurethanes with 50% SSC were hard elastomers with Shore D hardness of around 50, which is consistent with assumed co‐continuous morphology. Polymers with 70% SSC displayed lower Shore A hardness of 74–79 (Shore D around 25) as a result of globular hard domains dispersed in the soft matrix. Insertion of isosorbide increased rigidity, melting point and glass transition temperature of hard segments and tensile strength of elastomers with 50% SSC. These effects were weaker or non‐existent in 70% SSC series due to the short hard segments and low content of isosorbide. We also found that the thermal stability was lowered by increasing isosorbide content in both series. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42830.
Rigid thiourethane foams were prepared from vegetable oil-based polythiols (polymercaptans) and compared with soy- and castor oil-based polyurethane reference foams. Three types of polymercaptans were tested, soybean oil-based one with thiol groups only, epoxidized soybean oil-based with vicinal thiol and hydroxyl groups and castor oil-based with hydroxyl and thiol groups separated with several methylene units. Physical, mechanical, and thermal characteristics of polyol- and thiol based foams were similar to petrochemical foams used as heat insulation materials in construction, appliances, etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.