The Mycobacterium tuberculosis genome contains four copies of an operon called mce (mce1-4). Previously we reported that M. tuberculosis disrupted in the mce1 operon is more virulent than wild-type M. tuberculosis in mice. We generated single deletion mutants in mce3 (Dmce3) and mce4 (Dmce4) operons and a double deletion mutant (Dmce3/4). Similar doubling times and growth characteristics were observed for all mutants and the wild-type (parent) M. tuberculosis H37Rv strain in culture and in macrophages. In addition, similar bacterial burdens were detected in organs from mice infected with Dmce3 and the parent strain. However, the bacterial burdens of mice infected with Dmce4 and Dmce 3/4 were less than those of mice infected with the parent strain. The median survival times of mice infected with wild-type M. tuberculosis, Dmce3, Dmce4 and Dmce3/4 were 40.5, 46, 58 and 62 weeks, respectively. Histopathological examination of lungs at 15 weeks post-infection showed that the extent of the lung lesions was less prominent in mice infected with Dmce4 and Dmce 3/4 mutants than in mice infected with the other two strains. These observations suggest that the mce3 and mce4 operons have a role distinct from that of mce1 for in vivo survival of M. tuberculosis.
The lipid-rich cell wall of Mycobacterium tuberculosis, the agent of tuberculosis, serves as an effective barrier against many chemotherapeutic agents and toxic host cell effector molecules, and it may contribute to the mechanism of persistence. Mycobacterium tuberculosis strains mutated in a 13-gene operon called mce1, which encodes a putative ABC lipid transporter, induce aberrant granulomatous response in mouse lungs. Because of the postulated role of the mce1 operon in lipid importation, we compared the cell wall lipid composition of wild type and mce1 operon mutant M. tuberculosis H37Rv strains. High resolution mass spectrometric analyses of the mce1 mutant lipid extracts showed unbound mycolic acids to accumulate in the cell wall. Quantitative analysis revealed a 10.7 fold greater amount of free mycolates in the mutant compared to that of the wild type strain. The free mycolates were comprised of alpha, methoxy and keto mycolates in the ratio 1:0.9:0.6, respectively. Since the mce1 operon is regulated in vivo, the free mycolates that accumulate during infection may serve as a barrier for M. tuberculosis against toxic products and contribute to the pathogen's persistence.
Summary Mycobacterium tuberculosis genome contains four related sets of an operon called mce (mce1-4). The disruption of one of these operons, mce1, causes M. tuberculosis to become hypervirulent, whereas the mce3 and mce4 operon mutants are attenuated in mice. This study examined the phenotype of the mce2 operon mutant. The deletion of mce2 operon in M. tuberculosis H37Rv had no effect on bacterial growth in 7H9 liquid broth or survival within macrophages. However, RAW macrophage-like cells infected with the mutant strain were reduced in their ability to produce TNF-α, IL-6 and MCP-1. In C57BL/6 mouse lungs, the mce2 operon mutant and wild type H37Rv replicated similarly up to 20 weeks of infection. However, by 56 weeks of infection, all mice infected with the wild type H37Rv had died, while 80% of those infected with the mutant remained alive (P< 0.0001). The proportion of affected lung parenchyma in mice infected with the mutant was substantially less than that of mice infected with the wild type for the same time periods of infection. These observations suggest that the mce2 operon mutant is attenuated, and that this attenuation is related not to the bacterial burden but to the mutant’s decreased ability to elicit a type of immune response and lung pathology detrimental to the survival of the animal.
Mycobacterium tuberculosis, the causative agent of tuberculosis, has a lipid-rich cell wall that serves as an effective barrier against drugs and toxic host cell products, which may contribute to the organism's persistence in a host. M. tuberculosis contains four homologous operons called nice (mce1-4) that encode putative ABC transporters involved in lipid importation across the cell wall. Here, we analyzed the lipid composition of M. tuberculosis disrupted in the mce2 operon. High resolution mass spectrometric and thin layer chromatographic analyses of the mutant's cell wall lipid extracts showed accumulation of SL-1 and SL(1278) molecules. Radiographic quantitative analysis and densitometry revealed 2.9, 3.9 and 9.8-fold greater amount of [(35)S] SL-1 in the mce2 operon mutant compared to the wild type M. tuberculosis during the early/mid logarithmic, late logarithmic and stationary phase of growth in liquid broth, respectively. The amount of [(35)S] SL(1278) in the mutant also increased progressively over the same growth phases. The expression of the mce2 operon genes in the wild type strain progressively increased from the logarithmic to the stationary phase of bacterial growth in vitro, which inversely correlated with the proportion of radiolabel incorporation into SL-1 and SL(1278) at these phases. Since the mce2 operon is regulated in wild type M. tuberculosis, its cell wall may undergo changes in SL-1 and SL(1278) contents during a natural course of infection and this may serve as an important adaptive strategy for M. tuberculosis to maintain persistence in a host.
Mycobacterium tuberculosis disrupted in a 13-gene operon (mce1) accumulates free mycolic acids (FM) in its cell wall and causes accelerated death in mice. Here, to more comprehensively analyze differences in their cell wall lipid composition, we used an untargeted metabolomics approach to compare the lipid profiles of wild-type and mce1 operon mutant strains. By liquid chromatography-mass spectrometry, we identified >400 distinct lipids significantly altered in the mce1 mutant compared to wild type. These lipids included decreased levels of saccharolipids and glycerophospholipids, and increased levels of alpha-, methoxy- and keto mycolic acids (MA), and hydroxyphthioceranic acid. The mutant showed reduced expression of mmpL8, mmpL10, stf0, pks2 and papA2 genes involved in transport and metabolism of lipids recognized to induce proinflammatory response; these lipids were found to be decreased in the mutant. In contrast, the transcripts of mmpL3, fasI, kasA, kasB, acpM and RV3451 involved in MA transport and metabolism increased; MA inhibits inflammatory response in macrophages. Since the mce1 operon is known to be regulated in intracellular M. tuberculosis, we speculate that the differences we observed in cell wall lipid metabolism and composition may affect host response to M. tuberculosis infection and determine the clinical outcome of such an infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.