The objective of this work has been to compare the reliability of two Si3N4 ceramics, with Y2O3/Al2O3 or CTR2O3/Al2O3 mixtures as additives, in regard to their 4-point bending strength and to confirm the potential of the rare earth oxide mixture, CTR2O3, produced at FAENQUIL, as an alternative, low cost sinter additive for pure Y2O3 in the sintering of Si3N4 ceramics. The oxide mixture CTR2O3 is a solid solution formed mainly by Y2O3, Er2O3, Yb2O3 and Dy2O3 with other minor constituents and is obtained at a cost of only 20% of pure Y2O3. Samples were sintered by a gas pressure sintering process at 1900 °C under a nitrogen pressure of 1.5 MPa and an isothermal holding time of 2 h. The obtained materials were characterized by their relative density, phase composition and bending strength. The Weibull analysis was used to describe the reliability of these materials. Both materials produced presented relative densities higher than 99.5%t.d., b-Si3N4 and Y3Al5O12 (YAG) as cristalline phases and bending strengths higher than 650 MPa, thus demonstrating similar behaviors regarding their physical, chemical and mechanical characteristics. The statistical analysis of their strength also showed similar results for both materials, with Weibull moduli m of about 15 and characteristic stress values s o of about 700 MPa. These results confirmed the possibility of using the rare earth oxide mixture, CTR2O3, as sinter additive for high performance Si3N4 ceramics, without prejudice of the mechanical properties when compared to Si3N4 ceramics sintered with pure Y2O3
Ceramic cutting tools are showing a growing market perspective in terms of application on machining operations due to their high hardness, wear resistance, and machining without a cutting fluid, therefore are good candidates for cast iron and Nickel superalloys machining. The objective of the present paper was the development of Si 3 N 4 based ceramic cutting insert, characterization of its physical and mechanical properties, and subsequent coating with AlCrN using a PVD method. The characterization of the coating was made using an optical profiler, XRD, AFM and microhardness tester. The results showed that the tool presented a fracture toughness of 6.43 MPa.m 1/2 and hardness of 16 GPa. The hardness reached 31 GPa after coating. The machining tests showed a decrease on workpiece roughness when machining with coated insert, in comparison with the uncoated cutting tool. Probably this fact is related to hardness, roughness and topography of AlCrN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.