The stiffness of the median nerve progressively increases in its distal portions, where the nerve approaches the bone surface. Inter-observer agreement was generally good (from fair to moderate).
The aims were to investigate the plasticity of the myosin heavy chain (MHC) phenotype following neuromuscular electrical stimulation (NMES) and to assess the correlation between MHC isoform distribution and muscle fibre conduction velocity (MFCV).14 men were subjected to 24 sessions of quadriceps NMES. Needle biopsies were taken from the dominant vastus lateralis and neuromuscular tests were performed on the dominant thigh before and after training. NMES significantly increased the quadriceps maximal force by 14.4±19.7% (P=0.02), vastus lateralis thickness by 10.7±8.6% (P=0.01), vastus lateralis MFCV by 11.1±3.5% (P<0.001), vastus medialis MFCV by 8.4±1.8% (P<0.001). The whole spectrum of possible MHC isoform adaptations to training was observed: fast-to-slow transition (4 subjects), bi-directional transformation from MHC-1 and MHC-2X isoforms toward MHC-2A isoform (7 subjects), shift toward MHC-2X (2 subjects), no MHC distribution change (1 subject). No significant correlation was observed between MHC-2 relative content and vastus lateralis MFCV (pre-training: R2=0.04, P=0.46; post-training: R2=0.02, P=0.67). NMES elicited distinct adaptations in the MHC composition and increased force, muscle thickness, and MFCV. The MHC isoform distribution did not correlate with MFCV, thus implying that the proportion of different fibre types cannot be estimated from this electrophysiological variable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.