This chapter provides the topos-theoretic background necessary for understanding the contents of the book; the presentation is self-contained and only assumes a basic familiarity with the language of category theory. The chapter begins by reviewing the basic theory of Grothendieck toposes, including the fundamental equivalence between geometric morphisms and flat functors. Then it presents the notion of first-order theory and the various deductive systems for fragments of first-order logic that will be considered in the course of the book, notably including that of geometric logic. Further, it discusses categorical semantics, i.e. the interpretation of first-order theories in categories possessing ‘enough’ structure. Lastly, the key concept of syntactic category of a first-order theory is reviewed; this notion will be used in Chapter 2 for constructing classifying toposes of geometric theories.
We introduce an abstract topos-theoretic framework for building Galois-type theories in a variety of different mathematical contexts; such theories are obtained from representations of certain atomic two-valued toposes as toposes of continuous actions of a topological group. Our framework extends Grothendieck's theory of Galois categories and allows to build Galois-type equivalences in new contexts, such as for example graph theory and finite group theory
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.