Granulosa cell tumors (GCT) constitute only ~5% of ovarian neoplasms yet have significant consequences, as up to 80% of women with recurrent GCT will die of the disease. This study investigated the effectiveness of procaspase-activating compound 1 (PAC-1), an activator of procaspase-3, in treating adult GCT (AGCT) in combination with selected apoptosis-inducing agents. Sensitivity of the AGCT cell line KGN to these drugs, alone or in combination with PAC-1, was tested using a viability assay. Our results show a wide range in cytotoxic activity among the agents tested. Synergy with PAC-1 was most pronounced, both empirically and by mathematical modelling, when combined with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). This combination showed rapid kinetics of apoptosis induction as determined by caspase-3 activity, and strongly synergistic killing of both KGN as well as patient samples of primary and recurrent AGCT. We have demonstrated that the novel combination of two pro-apoptotic agents, TRAIL and PAC-1, significantly amplified the induction of apoptosis in AGCT cells, warranting further investigation of this combination as a potential therapy for AGCT.
Ovarian cancer is commonly diagnosed in its late stages, and new treatment modalities are needed to improve patient outcomes and survival. We have recently established the synergistic effects of combination tumor necrosis factor‐related apoptosis‐inducing ligand (TRAIL) and procaspase activating compound (PAC‐1) therapies in granulosa cell tumors (GCT) of the ovary, a rare form of ovarian cancer, using a mathematical model of the effects of both drugs in a GCT cell line. Here, to understand the mechanisms of combined TRAIL and PAC‐1 therapy, study the viability of this treatment strategy, and accelerate preclinical translation, we leveraged our mathematical model in combination with population pharmacokinetics (PKs) models of both TRAIL and PAC‐1 to expand a realistic heterogeneous cohort of virtual patients and optimize treatment schedules. Using this approach, we investigated treatment responses in this virtual cohort and determined optimal therapeutic schedules based on patient‐specific PK characteristics. Our results showed that schedules with high initial doses of PAC‐1 were required for therapeutic efficacy. Further analysis of individualized regimens revealed two distinct groups of virtual patients within our cohort: one with high PAC‐1 elimination and one with normal PAC‐1 elimination. In the high elimination group, high weekly doses of both PAC‐1 and TRAIL were necessary for therapeutic efficacy; however, virtual patients in this group were predicted to have a worse prognosis when compared to those in the normal elimination group. Thus, PAC‐1 PK characteristics, particularly clearance, can be used to identify patients most likely to respond to combined PAC‐1 and TRAIL therapy. This work underlines the importance of quantitative approaches in preclinical oncology.
Ovarian cancer is commonly diagnosed in its late stages, and new treatment modalities are needed to improve patient outcomes and survival. We have recently established the synergistic effects of combination tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and procaspase activating compound (PAC-1) therapies in granulosa cell tumours (GCT) of the ovary, a rare form of ovarian cancer, using a mathematical model of the effects of both drugs in a GCT cell line. Here, to understand the mechanisms of combined TRAIL and PAC-1 therapy, study the viability of this treatment strategy, and accelerate preclinical translation, we leveraged our mathematical model in combination with population pharmacokinetics (PopPK) models of both TRAIL and PAC-1 to expand a realistic heterogeneous cohort of virtual patients and optimize treatment schedules. Using this approach, we investigated treatment responses in this virtual cohort and determined optimal therapeutic schedules based on patient-specific pharmacokinetic characteristics. Our results showed that schedules with high initial doses of PAC-1 were required for therapeutic efficacy. Further analysis of individualized regimens revealed two distinct groups of virtual patients within our cohort: one with high PAC-1 elimination, and one with normal PAC-1 elimination. In the high elimination group, high weekly doses of both PAC-1 and TRAIL were necessary for therapeutic efficacy, however virtual patients in this group were predicted to have a worse prognosis when compared to those in the normal elimination group. Thus, PAC-1 pharmacokinetic characteristics, particularly clearance, can be used to identify patients most likely to respond to combined PAC-1 and TRAIL therapy. This work underlines the importance of quantitative approaches in preclinical oncology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.