Patients with BRAF-mutant melanoma show substantial responses to combined BRAF and MEK inhibition, but most relapse within 2 years. A major reservoir for drug resistance is minimal residual disease (MRD), comprised of drug-tolerant tumor cells laying in a dormant state. Towards exploiting potential therapeutic vulnerabilities of MRD, we established a genetically engineered mouse model of BrafV600E-driven melanoma MRD wherein genetic BrafV600E extinction leads to strong but incomplete tumor regression. Transcriptional time-course analysis after BrafV600E extinction revealed that after an initial surge of immune activation, tumors later became immunologically "cold" after MRD establishment. Computational analysis identified candidate T-cell recruiting chemokines as strongly upregulated initially and steeply decreasing as the immune response faded. Therefore, we hypothesized that sustaining chemokine signaling could impair MRD maintenance through increased recruitment of effector T cells. We found that intratumoral administration of recombinant Cxcl9 (rCxcl9), either naked or loaded in microparticles, significantly impaired MRD relapse in BRAF-inhibited tumors, including several complete pathologic responses after microparticle-delivered rCxcl9 combined with BRAF and MEK inhibition. Our experiments constitute proof of concept that chemokine-based microparticle delivery systems are a potential strategy to forestall tumor relapse and thus improve the clinical success of frontline treatment methods.
Ovarian cancer accounts for 3% of the total cancers in women, yet it is the fifth leading cause of cancer deaths among women. The BRCA1/2 germline and somatic mutations confer a deficiency of the homologous recombination (HR) repair pathway. Inhibitors of poly (ADP-ribose) polymerase (PARP), another important component of DNA damage repair, are somewhat effective in BRCA1/2 mutant tumors. However, ovarian cancers often reacquire functional BRCA and develop resistance to PARP inhibitors. Polyamines have been reported to facilitate the DNA damage repair functions of PARP. Given the elevated levels of polyamines in tumors, we hypothesized that treatment with the polyamine synthesis inhibitor, α-difluoromethylornithine (DFMO), may enhance ovarian tumor sensitivity to the PARP inhibitor, rucaparib. In HR-competent ovarian cancer cell lines with varying sensitivities to rucaparib, we show that co-treatment with DFMO increases the sensitivity of ovarian cancer cells to rucaparib. Immunofluorescence assays demonstrated that, in the presence of hydrogen peroxide-induced DNA damage, DFMO strongly inhibits PARylation, increases DNA damage accumulation, and reduces cell viability in both HR-competent and deficient cell lines. In vitro viability assays show that DFMO and rucaparib cotreatment significantly enhances the cytotoxicity of the chemotherapeutic agent, cisplatin. These results suggest that DFMO may be a useful adjunct chemotherapeutic to improve the anti-tumor efficacy of PARP inhibitors in treating ovarian cancer.
<p>Supplementary Figures S1-S5</p>
<div>Abstract<p>Patients with BRAF-mutant melanoma show substantial responses to combined BRAF and MEK inhibition, but most relapse within 2 years. A major reservoir for drug resistance is minimal residual disease (MRD), comprised of drug-tolerant tumor cells laying in a dormant state. Towards exploiting potential therapeutic vulnerabilities of MRD, we established a genetically engineered mouse model of BrafV600E-driven melanoma MRD wherein genetic BrafV600E extinction leads to strong but incomplete tumor regression. Transcriptional time-course analysis after BrafV600E extinction revealed that after an initial surge of immune activation, tumors later became immunologically “cold” after MRD establishment. Computational analysis identified candidate T-cell recruiting chemokines as strongly upregulated initially and steeply decreasing as the immune response faded. Therefore, we hypothesized that sustaining chemokine signaling could impair MRD maintenance through increased recruitment of effector T cells. We found that intratumoral administration of recombinant Cxcl9 (rCxcl9), either naked or loaded in microparticles, significantly impaired MRD relapse in BRAF-inhibited tumors, including several complete pathologic responses after microparticle-delivered rCxcl9 combined with BRAF and MEK inhibition. Our experiments constitute proof of concept that chemokine-based microparticle delivery systems are a potential strategy to forestall tumor relapse and thus improve the clinical success of first-line treatment methods.</p></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.